Do you want to publish a course? Click here

Phonon Stability of Quantum Droplets in a dipolar Bose gases

118   0   0.0 ( 0 )
 Added by Fan Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stabilized by quantum fluctuations, dipolar Bose-Einstein condensates can form self-bound liquidlike droplets in the mean-field unstable regime. However in the Bogoliubov theory, some phonon energies are imaginary in the long-wavelength limit, implying dynamical instability of this system. A similar instability appears in the Bogoliubov theory of a binary quantum droplet, and is removed due to higher-order quantum fluctuations as shown recently [1]. In this work, we study the phonon energy of a dipolar quantum droplet in the Beliaev formalism, and find that quantum fluctuations can enhance the phonon stability. We obtain the anisotropic sound velocity which can be tested in experiment.



rate research

Read More

Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize the dipolar droplet states in a one-dimensional context using a combination of analytical and numerical approaches, and identify experimentally viable parameters for accessing our findings for future experiments. In particular we identify regimes of stability in the restricted geometry, finding multiple roton instabilities as well as regions supporting quasi-one-dimensional droplet states. By applying an interaction quench to the droplet, a modulational instability is induced and multiple droplets are produced, along with bright solitons and atomic radiation. We also assess the droplets robustness to collisions, revealing population transfer and droplet fission.
Recently achieved two-component dipolar Bose-Einstein condensates open exciting possibilities for the study of mixtures of ultra-dilute quantum liquids. While non-dipolar self-bound mixtures are necessarily miscible with an approximately fixed ratio between the two densities, the density ratio for the dipolar case is free. As a result, self-bound dipolar mixtures present qualitatively novel and much richer physics, characterized by three possible ground-state phases: miscible, symmetric immiscible and asymmetric immiscible, which may in principle occur at any population imbalance. Self-bound immiscible droplets are possible due to mutual non-local inter-component attraction, which results in the formation of a droplet molecule. Moreover, our analysis of the impurity regime, shows that quantum fluctuations in the majority component crucially modify the miscibility of impurities. Our work opens intriguing perspectives for the exploration of spinor physics in ultra-dilute liquids, which should resemble to some extent that of 4He-3He droplets and impurity-doped helium droplets.
We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons, they experience a periodic potential due to an optical lattice oriented along the wave guide and are polarised by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multi-mode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a non-trivial way. Convergence tests at the linear-zigzag instability demonstrate that our multi-mode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.
We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of the dipolar interaction and approaching the transition to the supersolid phase. The critical angular velocity for the existence of an energetically stable vortex decreases in the supersolid, due to the reduced value of the density in the interdroplet region. The angular momentum per particle associated with the vortex line is shown to be smaller than $hbar$, reflecting the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For large angular velocities, when the distance between vortices becomes comparable to the interdroplet distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا