No Arabic abstract
Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than worrying about operating the interface to visualization tools. In the past two decades, leveraging advanced natural language processing technologies, numerous V-NLI systems have been developed both within academic research and commercial software, especially in recent years. In this article, we conduct a comprehensive review of the existing V-NLIs. In order to classify each paper, we develop categorical dimensions based on a classic information visualization pipeline with the extension of a V-NLI layer. The following seven stages are used: query understanding, data transformation, visual mapping, view transformation, human interaction, context management, and presentation. Finally, we also shed light on several promising directions for future work in the community.
Multivariate spatial data plays an important role in computational science and engineering simulations. The potential features and hidden relationships in multivariate data can assist scientists to gain an in-depth understanding of a scientific process, verify a hypothesis and further discover a new physical or chemical law. In this paper, we present a comprehensive survey of the state-of-the-art techniques for multivariate spatial data visualization. We first introduce the basic concept and characteristics of multivariate spatial data, and describe three main tasks in multivariate data visualization: feature classification, fusion visualization, and correlation analysis. Finally, we prospect potential research topics for multivariate data visualization according to the current research.
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the underlying vision of formalizing visualizations as an emerging data format and review the recent advance in applying AI techniques to visualization data (AI4VIS). We define visualization data as the digital representations of visualizations in computers and focus on data visualization (e.g., charts and infographics). We build our survey upon a corpus spanning ten different fields in computer science with an eye toward identifying important common interests. Our resulting taxonomy is organized around WHAT is visualization data and its representation, WHY and HOW to apply AI to visualization data. We highlight a set of common tasks that researchers apply to the visualization data and present a detailed discussion of AI approaches developed to accomplish those tasks. Drawing upon our literature review, we discuss several important research questions surrounding the management and exploitation of visualization data, as well as the role of AI in support of those processes. We make the list of surveyed papers and related material available online at ai4vis.github.io.
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VISis needed. In this paper, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: what visualization processes can be assisted by ML? and how ML techniques can be used to solve visualization problems? This survey reveals seven main processes where the employment of ML techniques can benefit visualizations:Data Processing4VIS, Data-VIS Mapping, InsightCommunication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations.Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this paper can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io
Over the past thirty years, there has been considerable progress in the design of natural language interfaces to databases. Most of this work has concerned snapshot databases, in which there are only limited facilities for manipulating time-varying information. The database community is becoming increasingly interested in temporal databases, databases with special support for time-dependent entries. We have developed a framework for constructing natural language interfaces to temporal databases, drawing on research on temporal phenomena within logic and linguistics. The central part of our framework is a logic-like formal language, called TOP, which can capture the semantics of a wide range of English sentences. We have implemented an HPSG-based sentence analyser that converts a large set of English queries involving time into TOP formulae, and have formulated a provably correct procedure for translating TOP expressions into queries in the TSQL2 temporal database language. In this way we have established a sound route from English to a general-purpose temporal database language.
Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.