No Arabic abstract
In the noisy intermediate-scale quantum (NISQ) era, one of the key questions is how to deal with the high noise level existing in physical quantum bits (qubits). Quantum error correction is promising but requires an extensive number (e.g., over 1,000) of physical qubits to create one perfect qubit, exceeding the capacity of the existing quantum computers. This paper aims to tackle the noise issue from another angle: instead of creating perfect qubits for general quantum algorithms, we investigate the potential to mitigate the noise issue for dedicate algorithms. Specifically, this paper targets quantum neural network (QNN), and proposes to learn the errors in the training phase, so that the identified QNN model can be resilient to noise. As a result, the implementation of QNN needs no or a small number of additional physical qubits, which is more realistic for the near-term quantum computers. To achieve this goal, an application-specific compiler is essential: on the one hand, the error cannot be learned if the mapping from logical qubits to physical qubits exists randomness; on the other hand, the compiler needs to be efficient so that the lengthy training procedure can be completed in a reasonable time. In this paper, we utilize the recent QNN framework, QuantumFlow, as a case study. Experimental results show that the proposed approach can optimize QNN models for different errors in qubits, achieving up to 28% accuracy improvement compared with the model obtained by the error-agnostic training.
Generalization is an important feature of neural network, and there have been many studies on it. Recently, with the development of quantum compu-ting, it brings new opportunities. In this paper, we studied a class of quantum neural network constructed by quantum gate. In this model, we mapped the feature data to a quantum state in Hilbert space firstly, and then implement unitary evolution on it, in the end, we can get the classification result by im-plement measurement on the quantum state. Since all the operations in quan-tum neural networks are unitary, the parameters constitute a hypersphere of Hilbert space. Compared with traditional neural network, the parameter space is flatter. Therefore, it is not easy to fall into local optimum, which means the quantum neural networks have better generalization. In order to validate our proposal, we evaluated our model on three public datasets, the results demonstrated that our model has better generalization than the classical neu-ral network with the same structure.
Agile methods are predominantly focused on delivering business values. But can Agile methods be adapted to effectively address and deliver human values such as social justice, privacy, and sustainability in the software they produce? Human values are what an individual or a society considers important in life. Ignoring these human values in software can pose difficulties or risks for all stakeholders (e.g., user dissatisfaction, reputation damage, financial loss). To answer this question, we selected the Scaled Agile Framework (SAFe), one of the most commonly used Agile methods in the industry, and conducted a qualitative case study to identify possible intervention points within SAFe that are the most natural to address and integrate human values in software. We present five high-level empirically-justified sets of interventions in SAFe: artefacts, roles, ceremonies, practices, and culture. We elaborate how some current Agile artefacts (e.g., user story), roles (e.g., product owner), ceremonies (e.g., stand-up meeting), and practices (e.g., business-facing testing) in SAFe can be modified to support the inclusion of human values in software. Further, our study suggests new and exclusive values-based artefacts (e.g., legislative requirement), ceremonies (e.g., values conversation), roles (e.g., values champion), and cultural practices (e.g., induction and hiring) to be introduced in SAFe for this purpose. Guided by our findings, we argue that existing Agile methods can account for human values in software delivery with some evolutionary adaptations.
Quantum machine learning is one of the most promising applications of quantum computing in the Noisy Intermediate-Scale Quantum(NISQ) era. Here we propose a quantum convolutional neural network(QCNN) inspired by convolutional neural networks(CNN), which greatly reduces the computing complexity compared with its classical counterparts, with $O((log_{2}M)^6) $ basic gates and $O(m^2+e)$ variational parameters, where $M$ is the input data size, $m$ is the filter mask size and $e$ is the number of parameters in a Hamiltonian. Our model is robust to certain noise for image recognition tasks and the parameters are independent on the input sizes, making it friendly to near-term quantum devices. We demonstrate QCNN with two explicit examples. First, QCNN is applied to image processing and numerical simulation of three types of spatial filtering, image smoothing, sharpening, and edge detection are performed. Secondly, we demonstrate QCNN in recognizing image, namely, the recognition of handwritten numbers. Compared with previous work, this machine learning model can provide implementable quantum circuits that accurately corresponds to a specific classical convolutional kernel. It provides an efficient avenue to transform CNN to QCNN directly and opens up the prospect of exploiting quantum power to process information in the era of big data.
Noise and decoherence are two major obstacles to the implementation of large-scale quantum computing. Because of the no-cloning theorem, which says we cannot make an exact copy of an arbitrary quantum state, simple redundancy will not work in a quantum context, and unwanted interactions with the environment can destroy coherence and thus the quantum nature of the computation. Because of the parallel and distributed nature of classical neural networks, they have long been successfully used to deal with incomplete or damaged data. In this work, we show that our model of a quantum neural network (QNN) is similarly robust to noise, and that, in addition, it is robust to decoherence. Moreover, robustness to noise and decoherence is not only maintained but improved as the size of the system is increased. Noise and decoherence may even be of advantage in training, as it helps correct for overfitting. We demonstrate the robustness using entanglement as a means for pattern storage in a qubit array. Our results provide evidence that machine learning approaches can obviate otherwise recalcitrant problems in quantum computing.
Along with the development of AI democratization, the machine learning approach, in particular neural networks, has been applied to wide-range applications. In different application scenarios, the neural network will be accelerated on the tailored computing platform. The acceleration of neural networks on classical computing platforms, such as CPU, GPU, FPGA, ASIC, has been widely studied; however, when the scale of the application consistently grows up, the memory bottleneck becomes obvious, widely known as memory-wall. In response to such a challenge, advanced quantum computing, which can represent 2^N states with N quantum bits (qubits), is regarded as a promising solution. It is imminent to know how to design the quantum circuit for accelerating neural networks. Most recently, there are initial works studying how to map neural networks to actual quantum processors. To better understand the state-of-the-art design and inspire new design methodology, this paper carries out a case study to demonstrate an end-to-end implementation. On the neural network side, we employ the multilayer perceptron to complete image classification tasks using the standard and widely used MNIST dataset. On the quantum computing side, we target IBM Quantum processors, which can be programmed and simulated by using IBM Qiskit. This work targets the acceleration of the inference phase of a trained neural network on the quantum processor. Along with the case study, we will demonstrate the typical procedure for mapping neural networks to quantum circuits.