No Arabic abstract
The cosmology of the Twin Higgs requires the breaking of the $mathbb{Z}_2$ symmetry, but it is still an open question whether this breaking needs to be explicit. In this paper, we study how the Mirror Twin Higgs could be modified to be compatible with current cosmological constraints without explicit $mathbb{Z}_2$ breaking. We first present a simple toy model that can realize baryogenesis without explicit $mathbb{Z}_2$ breaking or reaching temperatures that would lead to domain walls. The model can also either solve the $N_{text{eff}}$ problem and bring the abundance of mirror atoms to an allowed level or provide the correct dark matter abundance. We then present another simple model that leads to mirror neutron dark matter and thus acceptable dark matter self-interactions. We also include in appendix a series of results on energy exchange between different sectors that might prove useful for other cosmological problems.
The twin Higgs mechanism is a solution to the little hierarchy problem in which the top partner is neutral under the Standard Model (SM) gauge group. The simplest mirror twin Higgs (MTH) model -- where a $mathbf{Z}_2$ symmetry copies each SM particle -- has too many relativistic degrees of freedom to be consistent with cosmological observations. We demonstrate that MTH models can have an observationally viable cosmology if the twin mass spectrum leads to twin neutrino decoupling before the SM and twin QCD phase transitions. Our solution requires the twin photon to have a mass of $sim 20$ MeV and kinetically mix with the SM photon to mediate entropy transfer from the twin sector to the SM. This twin photon can be robustly discovered or excluded by future experiments. Additionally, the residual twin degrees of freedom present in the early Universe in this scenario would be detectable by future observations of the cosmic microwave background.
In twin Higgs model, the Higgs boson mass is protected by a $Z_2$ symmetry. The $Z_2$ symmetry needs to be broken either explicitly or spontaneously to obtain misalignment between electroweak and new physics vacua. We propose a novel $Z_2$ breaking mechanism, in which the $Z_2$ is spontaneously broken by radiative corrections to the Higgs potential. Two twin Higgses with different vacua are needed, and vacuum misalignment is realized by opposite but comparable contributions from gauge and Yukawa interactions to the potential. Due to fully radiative symmetry breaking, the Higgs sector is completely determined by twin Higgs vacuum, Yukawa and gauge couplings. There are eight pseudo-Goldstone bosons: the Higgs boson, inert doublet Higgs, and three twin scalars. We show the 125 GeV Higgs mass and constraints from Higgs coupling measurements could be satisfied.
We perform a digital pseudoquantum simulation of $mathbb{Z}_2$ gauge Higgs model on a $3times 3$ lattice. First we propose the quantum algorithm for the digital quantum simulation, based on Trotter decomposition, quantum adiabatic algorithm and its circuit realization. Then we classically demonstrate it in a GPU simulator, obtaining useful results, which indicate the topological properties of deconfined phase and clarify the phase diagram. Especially, our work suggests that the tricitical point, where the two critical lines of second-order transitions meet, lies on the critical line of the first-order transition rather than its end.
We build rigorously the attractive five-dimensional model where bulk fermions propagate along the $ mathcal{S}^1 / mathbb{Z}_2$ orbifold and interact with a Higgs boson localised at a fixed point of the extra dimension. The analytical calculation of the fermion mass spectrum and effective Yukawa couplings is shown to require the introduction of either Essential Boundary Conditions (EBC) imposed by the model definition or certain Bilinear Brane Terms (BBT) in the action, instead of the usual brane-Higgs regularisations. The obtained fermion profiles along the extra dimension turn out to undergo some discontinuities, in particular at the Higgs brane, which can be mathematically consistent if the action is well written with improper integrals. We also show that the $mathbb{Z}_2$ parity transformations in the bulk do not affect the fermion chiralities, masses and couplings, in contrast with the EBC and BBT, but when extended to the fixed points, they can generate the chiral nature of the theory and even select the Standard Model chirality set-up while fixing as well the fermion masses and couplings. Thanks to the strict analysis developed, the duality with the interval model is scrutinised.
Twin Higgs models are the prime illustration of neutral naturalness, where the new particles of the twin sector, gauge singlets of the Standard Model (SM), ameliorate the little hierarchy problem. In this work, we analyse phenomenological implications of the heavy Higgs of the Mirror Twin Higgs and Fraternal Twin Higgs models, when electroweak symmetry breaking is linearly realized. The most general structure of twin Higgs symmetry breaking, including explicit soft and hard breaking terms in the scalar potential, is employed. The direct and indirect searches at the LHC are used to probe the parameter space of Twin Higgs models through mixing of the heavy Higgs with the SM Higgs and decays of the heavy Higgs to the SM states. Moreover, for the Fraternal Twin Higgs, we study the production and decays of twin glueball and bottomonium states to the SM light fermions, which have interesting signatures involving displaced vertices and are potentially observable at the colliders.