Do you want to publish a course? Click here

Retrieving cosmological information from small-scale CMB foregrounds I. The thermal Sunyaev Zeldovich effect

79   0   0.0 ( 0 )
 Added by Marian Douspis
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new analysis of small scale CMB data by introducing the cosmological dependency of the foreground signals, focusing first on the thermal Sunyaev-Zeldovich (tSZ) power spectrum, derived from the halo model. We analyse the latest observations by the South Pole Telescope (SPT) of the high-$ell$ power (cross) spectra at 90, 150 and 220 GHz, as the sum of CMB and tSZ signals, both depending on cosmological parameters, and remaining contaminants. In order to perform faster analyses, we propose a new tSZ modelling based on machine learning algorithms (namely Random Forest). We show that the additional information contained in the tSZ power spectrum tightens constraints on cosmological and tSZ scaling relation parameters. We combine for the first time the Planck tSZ data with SPT high-$ell$ to derive even stronger constraints. Finally, we show how the amplitude of the remaining kSZ power spectrum varies depending on the assumptions made on both tSZ and cosmological parameters.



rate research

Read More

While the arcminute-scale Cosmic Microwave Background (CMB) anisotropies are due to secondary effects, point sources dominate the total anisotropy power spectrum. At high frequencies the point sources are primarily in the form of dusty, star-forming galaxies. Both Herschel and Planck have recently measured the anisotropy power spectrum of cosmic infrared background (CIB) generated by dusty, star-forming galaxies from degree to sub-arcminute angular scales, including the non-linear clustering of these galaxies at multipoles of 3000 to 6000 relevant to CMB secondary anisotropy studies. We scale the CIB angular power spectra to CMB frequencies and interpret the combined WMAP-7 year and arcminute-scale Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) CMB power spectra measurements to constrain the Sunyaev-Zeldovich (SZ) effects. Allowing the CIB clustering amplitude to vary, we constrain the amplitudes of thermal and kinetic SZ power spectra at 150 GHz.
In the standard hot cosmological model, the black-body temperature of the Cosmic Microwave Background (CMB), $T_{rm CMB}$, increases linearly with redshift. Across the line of sight CMB photons interact with the hot ($sim10^{7-8}$ K) and diffuse gas of electrons from galaxy clusters. This interaction leads to the well known thermal Sunyaev-Zeldovich effect (tSZ), which produces a distortion of the black-body emission law, depending on $T_{rm CMB}$. Using tSZ data from the ${it Planck}$ satellite it is possible to constrain $T_{rm CMB}$ below z=1. Focusing on the redshift dependance of $T_{rm CMB}$ we obtain $T_{rm CMB}(z)=(2.726pm0.001)times (1+z)^{1-beta}$ K with $beta=0.009pm0.017$, improving previous constraints. Combined with measurements of molecular species absorptions, we derive $beta=0.006pm0.013$. These constraints are consistent with the standard (i.e. adiabatic, $beta=0$) Big-Bang model.
183 - Qiang Yuan 2009
In this work we calculate the Sunyaev-Zeldovich (SZ) effect due to the $e^+e^-$ from dark matter (DM) annihilation in galaxy clusters. Two candidates of DM particle, (1) the weakly-interacting massive particle (WIMP) and (2) the light dark matter (LDM) are investigated. For each case, we also consider several DM profiles with and without central cusp. We generally find smaller signals than previously reported. Moreover, the diffusion of electrons and positrons in the galaxy clusters, which was generally thought to be negligible, is considered and found to have significant effect on the central electron/positron distribution for DM profile with large spatial gradient. We find that the SZ effect from WIMP is almost always non-observable, even for the highly cuspy DM profile, and using the next generation SZ interferometer such as ALMA. Although the signal of the LDM is much larger than that of the WIMP, the final SZ effect is still very small due to the smoothing effect of diffusion. Only for the configuration with large central cusp and extremely small diffusion effect, the LDM induced SZ effect might have a bit chance of being detected.
180 - A. Waelkens 2007
We consider the role of the galactic kinetic Sunyaev Zeldovich (SZ) effect as a CMB foreground. While the galactic thermal Sunyaev Zeldovich effect has previously been studied and discarded as a potential CMB foreground, we find that the kinetic SZ effect is dominant in the galactic case. We analyse the detectability of the kinetic SZ effect by means of an optimally matched filter technique applied to a simulation of an ideal observation. We obtain no detection, getting a S/N ratio of 0.1, thereby demonstrating that the kinetic SZ effect can also safely be ignored as a CMB foreground. However we provide maps of the expected signal for inclusion in future high precision data processing. Furthermore, we rule out the significant contamination of the polarised CMB signal by second scattering of galactic kinetic Sunyaev-Zeldovich photons, since we show that the scattering of the CMB quadrupole photons by galactic electrons is a stronger effect than the Sunyaev Zeldovich second scattering, and has already been shown to produce no significant polarised contamination. We confirm the latter assessment also by means of an optimally matched filter.
Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (covering approximately 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zeldovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا