Do you want to publish a course? Click here

On trace of Brownian motion on the boundary of a strip

87   0   0.0 ( 0 )
 Added by Liping Li
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The trace of a Markov process is the time changed process of the original process on the support of the Revuz measure used in the time change. In this paper, we will concentrate on the reflecting Brownian motions on certain closed strips. On one hand, we will formulate the concrete expression of the Dirichlet forms associated with the traces of such reflecting Brownian motions on the boundary. On the other hand, the limits of these traces as the distance between the upper and lower boundaries tends to $0$ or $infty$ will be further obtained.



rate research

Read More

Local perturbations of a Brownian motion are considered. As a limit we obtain a non-Markov process that behaves as a reflected Brownian motion on the positive half line until its local time at zero reaches some exponential level, then changes a sign and behaves as a reflected Brownian motion on the negative half line until some stopping time, etc.
We define kinetic Brownian motion on the diffeomorphism group of a closed Riemannian manifold, and prove that it provides an interpolation between the hydrodynamic flow of a fluid and a Brownian-like flow.
126 - Wei Qian 2016
We show that if one conditions a cluster in a Brownian loop-soup $L$ (of any intensity) in a two-dimensional domain by a portion $l$ of its outer boundary, then in the remaining domain, the union of all the loops of $L$ that touch $l$ satisfies the conformal restriction property while the other loops in $L$ form an independent loop-soup. This result holds when one discovers $l$ in a natural Markovian way, such as in the exploration procedures that have been defined in order to actually construct the Conformal Loop Ensembles as outer boundaries of loop-soup clusters. This result implies among other things that a phase transition occurs at c = 14/15 for the connectedness of the loops that touch $l$. Our results can be viewed as an extension of some of the results in our earlier paper in the following two directions: There, a loop-soup cluster was conditioned on its entire outer boundary while we discover here only part of this boundary. And, while it was explained there that the strong decomposition using a Poisson point process of excursions that we derived there should be specific to the case of the critical loop-soup, we show here that in the subcritical cases, a weaker property involving the conformal restriction property nevertheless holds.
This paper is devoted to studying the properties of the exit times of stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs). In particular, we prove that the exit times of $G$-SDEs has the quasi-continuity property. As an application, we give a probabilistic representation for a large class of fully nonlinear elliptic equations with Dirichlet boundary.
A time-changed mixed fractional Brownian motion is an iterated process constructed as the superposition of mixed fractional Brownian motion and other process. In this paper we consider mixed fractional Brownian motion of parameters a, b and Hin(0, 1) time-changed by two processes, gamma and tempered stable subordinators. We present their main properties paying main attention to the long range dependence. We deduce that the fractional Brownian motion time-changed by gamma and tempered stable subordinators has long range dependence property for all Hin(0, 1).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا