Given the ubiquity of memory in commodity electronic devices, fingerprinting memory is a compelling proposition, especially for low-end Internet of Things (IoT) devices where cryptographic modules are often unavailable. However, the use of fingerprints in security functions is challenged by the inexact reproductions of fingerprints from the same device at different time instances due to various noise sources causing, small, but unpredictable variations in fingerprint measurements. Our study formulates a novel and textit{pragmatic} approach to achieve the elusive goal of affording highly reliable fingerprints from device memories. We investigate the transformation of raw fingerprints into a noise-tolerant space where the generation of fingerprints from memory biometrics is intrinsically highly reliable. Further, we derive formal performance bounds to support practitioners to adopt our methods for practical applications. Subsequently, we demonstrate the expressive power of our formalization by using it to investigate the practicability of extracting noise-tolerant fingerprints from commodity devices. We have employed a set of 38 memory chips including SRAM (69,206,016 cells), Flash (3,902,976 cells) and EEPROM (32,768 cells) ubiquitously embedded in low-end commodity devices from 6 different manufacturers for extensive experimental validations. Our results demonstrate that noise-tolerant fingerprints -- achieving a key failure rate less than $10^{-6}$ -- can always be efficiently afforded from tested memories with a solely fingerprint snap-shot enrollment. Further, we employ a low-cost wearable Bluetooth inertial sensor and demonstrate a practical, end-to-end implementation of a remote attestation security function built upon a root key from noise-tolerant SRAM fingerprints generated on demand and at run-time.