On a sum involving certain arithmetic functions and the integral part function


Abstract in English

In this short, we study sums of the shape $sum_{nleqslant x}{f([x/n])}/{[x/n]},$ where $f$ is Euler totient function $varphi$, Dedekind function $Psi$, sum-of-divisors function $sigma$ or the alternating sum-of-divisors function $beta.$ We improve previous results when $f=varphi$ and derive new estimates when $f=Psi, f=sigma$ and $f=beta.$

Download