Do you want to publish a course? Click here

Analyzing melts and fluids from ab initio molecular dynamics simulations with the UMD package

207   0   0.0 ( 0 )
 Added by Razvan Caracas
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a Python-based open-source package to analyze the results stemming from ab initio molecular-dynamics simulations of fluids. The package is best suited for applications on natural systems, like silicate and oxide melts, water-based fluids, various supercritical fluids. The package is a collection of Python scripts that include two major libraries dealing with file formats and with crystallography. All the scripts are run at the command line. We propose a simplified format to store the atomic trajectories and relevant thermodynamic information of the simulations, which is saved in UMD files, standing for Universal Molecular Dynamics. The UMD package allows the computation of a series of structural, transport and thermodynamic properties. Starting with the pair-distribution function it defines bond lengths, builds an interatomic connectivity matrix, and eventually determines the chemical speciation. Determining the lifetime of the chemical species allows running a full statistical analysis. Then dedicated scripts compute the mean-square displacements for the atoms as well as for the chemical species. The implemented self-correlation analysis of the atomic velocities yields the diffusion coefficients and the vibrational spectrum. The same analysis applied on the stresses yields the viscosity. The package is available via the GitHub website and via its own dedicated page of the ERC IMPACT project as open-access package.



rate research

Read More

Despite their rich information content, electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally under-utilized. We introduce a transferable high-fidelity neural network representation of such data in the form of tight-binding Hamiltonians for crystalline materials. This predictive representation of ab initio electronic structure, combined with machine-learning boosted molecular dynamics, enables efficient and accurate electronic evolution and sampling. When applied to a one-dimension charge-density wave material, carbyne, we are able to compute the spectral function and optical conductivity in the canonical ensemble. The spectral functions evaluated during soliton-antisoliton pair annihilation process reveal significant renormalization of low-energy edge modes due to retarded electron-lattice coupling beyond the Born-Oppenheimer limit. The availability of an efficient and reusable surrogate model for the electronic structure dynamical system will enable calculating many interesting physical properties, paving way to previously inaccessible or challenging avenues in materials modeling.
The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed
We extend the ab initio molecular dynamics (AIMD) method based on density functional theory to the nonequilibrium situation where an electronic current is present in the electronic system. The dynamics is treated using the semi-classical generalized Langevin equation. We demonstrate how the full anharmonic description of the inter-atomic forces is important in order to understand the current-induced heating and the energy distribution both in frequency and in real space.
Motivated by the discovery of multiferroicity in the geometrically frustrated triangular antiferromagnet CuCrO$_2$ below its Neel temperature $T_N$, we investigate its magnetic and ferroelectric properties using ab initio calculations and Monte Carlo simulations. Exchange interactions up to the third nearest neighbors in the $ab$ plane, inter-layer interaction and single ion anisotropy constants in CuCrO$_2$ are estimated by series of density functional theory calculations. In particular, our results evidence a hard axis along the [110] direction due to the lattice distortion that takes place along this direction below $T_N$. Our Monte Carlo simulations indicate that the system possesses a Neel temperature $T_Napprox27$ K very close to the ones reported experimentally ($T_N = 24-26$ K). Also we show that the ground state is a proper-screw magnetic configuration with an incommensurate propagation vector pointing along the [110] direction. Moreover, our work reports the emergence of spin helicity below $T_N$ which leads to ferroelectricity in the extended inverse Dzyaloshinskii-Moriya model. We confirm the electric control of spin helicity by simulating $P$-$E$ hysteresis loops at various temperatures.
We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up to 1173 K. The ab-initio molecular dynamics (AIMD) simulations supplement the measurements and show 1-d long-ranged diffusion along the a-axis above 1500 K. The simulations indicate that the occupancy of the interstitial site is critical for long-range diffusion. The nudged-elastic-band (NEB) calculation confirmed that the activation energy barrier is lowest for diffusion along the a-axis. In the experimental phonon spectra the peaks at 10 and 14 meV are dominated by Na dynamics that disappear on warming, suggesting low-energy phonons significantly contribute to large Na vibrational amplitude at elevated temperatures that enhances the Na hopping probability. We have also calculated the mode Gruneisen parameters of the phonons and thereby calculated the volume thermal expansion coefficient, which is found to be in excellent agreement with available experimental data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا