No Arabic abstract
Previous studies demonstrate DNNs vulnerability to adversarial examples and adversarial training can establish a defense to adversarial examples. In addition, recent studies show that deep neural networks also exhibit vulnerability to parameter corruptions. The vulnerability of model parameters is of crucial value to the study of model robustness and generalization. In this work, we introduce the concept of parameter corruption and propose to leverage the loss change indicators for measuring the flatness of the loss basin and the parameter robustness of neural network parameters. On such basis, we analyze parameter corruptions and propose the multi-step adversarial corruption algorithm. To enhance neural networks, we propose the adversarial parameter defense algorithm that minimizes the average risk of multiple adversarial parameter corruptions. Experimental results show that the proposed algorithm can improve both the parameter robustness and accuracy of neural networks.
Machine learning algorithms with empirical risk minimization usually suffer from poor generalization performance due to the greedy exploitation of correlations among the training data, which are not stable under distributional shifts. Recently, some invariant learning methods for out-of-distribution (OOD) generalization have been proposed by leveraging multiple training environments to find invariant relationships. However, modern datasets are frequently assembled by merging data from multiple sources without explicit source labels. The resultant unobserved heterogeneity renders many invariant learning methods inapplicable. In this paper, we propose Heterogeneous Risk Minimization (HRM) framework to achieve joint learning of latent heterogeneity among the data and invariant relationship, which leads to stable prediction despite distributional shifts. We theoretically characterize the roles of the environment labels in invariant learning and justify our newly proposed HRM framework. Extensive experimental results validate the effectiveness of our HRM framework.
We propose a simple change to existing neural network structures for better defending against gradient-based adversarial attacks. Instead of using popular activation functions (such as ReLU), we advocate the use of k-Winners-Take-All (k-WTA) activation, a C0 discontinuous function that purposely invalidates the neural network models gradient at densely distributed input data points. The proposed k-WTA activation can be readily used in nearly all existing networks and training methods with no significant overhead. Our proposal is theoretically rationalized. We analyze why the discontinuities in k-WTA networks can largely prevent gradient-based search of adversarial examples and why they at the same time remain innocuous to the network training. This understanding is also empirically backed. We test k-WTA activation on various network structures optimized by a training method, be it adversarial training or not. In all cases, the robustness of k-WTA networks outperforms that of traditional networks under white-box attacks.
The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and finding invariant predictors reduces the effect of spurious features by concentrating models on features that have a causal relationship with the outcome. In this work, we pose such invariant risk minimization as finding the Nash equilibrium of an ensemble game among several environments. By doing so, we develop a simple training algorithm that uses best response dynamics and, in our experiments, yields similar or better empirical accuracy with much lower variance than the challenging bi-level optimization problem of Arjovsky et al. (2019). One key theoretical contribution is showing that the set of Nash equilibria for the proposed game are equivalent to the set of invariant predictors for any finite number of environments, even with nonlinear classifiers and transformations. As a result, our method also retains the generalization guarantees to a large set of environments shown in Arjovsky et al. (2019). The proposed algorithm adds to the collection of successful game-theoretic machine learning algorithms such as generative adversarial networks.
Despite being popularly used in many applications, neural network models have been found to be vulnerable to adversarial examples, i.e., carefully crafted examples aiming to mislead machine learning models. Adversarial examples can pose potential risks on safety and security critical applications. However, existing defense approaches are still vulnerable to attacks, especially in a white-box attack scenario. To address this issue, we propose a new defense approach, named MulDef, based on robustness diversity. Our approach consists of (1) a general defense framework based on multiple models and (2) a technique for generating these multiple models to achieve high defense capability. In particular, given a target model, our framework includes multiple models (constructed from the target model) to form a model family. The model family is designed to achieve robustness diversity (i.e., an adversarial example successfully attacking one model cannot succeed in attacking other models in the family). At runtime, a model is randomly selected from the family to be applied on each input example. Our general framework can inspire rich future research to construct a desirable model family achieving higher robustness diversity. Our evaluation results show that MulDef (with only up to 5 models in the family) can substantially improve the target models accuracy on adversarial examples by 22-74% in a white-box attack scenario, while maintaining similar accuracy on legitimate examples.
Though deep neural networks perform challenging tasks excellently, they are susceptible to adversarial examples, which mislead classifiers by applying human-imperceptible perturbations on clean inputs. Under the query-free black-box scenario, adversarial examples are hard to transfer to unknown models, and several methods have been proposed with the low transferability. To settle such issue, we design a max-min framework inspired by input transformations, which are benificial to both the adversarial attack and defense. Explicitly, we decrease loss values with inputs affline transformations as a defense in the minimum procedure, and then increase loss values with the momentum iterative algorithm as an attack in the maximum procedure. To further promote transferability, we determine transformed values with the max-min theory. Extensive experiments on Imagenet demonstrate that our defense-guided transferable attacks achieve impressive increase on transferability. Experimentally, we show that our ASR of adversarial attack reaches to 58.38% on average, which outperforms the state-of-the-art method by 12.1% on the normally trained models and by 11.13% on the adversarially trained models. Additionally, we provide elucidative insights on the improvement of transferability, and our method is expected to be a benchmark for assessing the robustness of deep models.