No Arabic abstract
In this note, I develop my personal view on the scope and relevance of symbolic computation in software science. For this, I discuss the interaction and differences between symbolic computation, software science, automatic programming, mathematical knowledge management, artificial intelligence, algorithmic intelligence, numerical computation, and machine learning. In the discussion of these notions, I allow myself to refer also to papers (1982, 1985, 2001, 2003, 2013) of mine in which I expressed my views on these areas at early stages of some of these fields.
This volume contains papers presented at the Ninth International Symposium on Symbolic Computation in Software Science, SCSS 2021. Symbolic Computation is the science of computing with symbolic objects (terms, formulae, programs, representations of algebraic objects, etc.). Powerful algorithms have been developed during the past decades for the major subareas of symbolic computation: computer algebra and computational logic. These algorithms and methods are successfully applied in various fields, including software science, which covers a broad range of topics about software construction and analysis. Meanwhile, artificial intelligence methods and machine learning algorithms are widely used nowadays in various domains and, in particular, combined with symbolic computation. Several approaches mix artificial intelligence and symbolic methods and tools deployed over large corpora to create what is known as cognitive systems. Cognitive computing focuses on building systems that interact with humans naturally by reasoning, aiming at learning at scale. The purpose of SCSS is to promote research on theoretical and practical aspects of symbolic computation in software science, combined with modern artificial intelligence techniques. These proceedings contain the keynote paper by Bruno Buchberger and ten contributed papers. Besides, the conference program included three invited talks, nine short and work-in-progress papers, and a special session on computer algebra and computational logic. Due to the COVID-19 pandemic, the symposium was held completely online. It was organized by the Research Institute for Symbolic Computation (RISC) of the Johannes Kepler University Linz on September 8--10, 2021.
The complexity of matrix multiplication (hereafter MM) has been intensively studied since 1969, when Strassen surprisingly decreased the exponent 3 in the cubic cost of the straightforward classical MM to log 2 (7) $approx$ 2.8074. Applications to some fundamental problems of Linear Algebra and Computer Science have been immediately recognized, but the researchers in Computer Algebra keep discovering more and more applications even today, with no sign of slowdown. We survey the unfinished history of decreasing the exponent towards its information lower bound 2, recall some important techniques discovered in this process and linked to other fields of computing, reveal sample surprising applications to fast computation of the inner products of two vectors and summation of integers, and discuss the curse of recursion, which separates the progress in fast MM into its most acclaimed and purely theoretical part and into valuable acceleration of MM of feasible sizes. Then, in the second part of our paper, we cover fast MM in realistic symbolic computations and discuss applications and implementation of fast exact matrix multiplication. We first review how most of exact linear algebra can be reduced to matrix multiplication over small finite fields. Then we highlight the differences in the design of approximate and exact implementations of fast MM, taking into account nowadays processor and memory hierarchies. In the concluding section we comment on current perspectives of the study of fast MM.
We give a brief introduction to FORM, a symbolic programming language for massive batch operations, designed by J.A.M. Vermaseren. In particular, we stress various methods to efficiently use FORM under the UNIX operating system. Several scripts and examples are given, and suggestions on how to use the vim editor as development platform.
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.
We are celebrating thirty-years from the seminal papers from Weinberg proposing to use the rules of Chiral Perturbation Theory to nucleon systems. His proposal was to build an Effective Field Theory (EFT) with Chiral symmetry as a key property. A big effort on this line have been made during these three decades, however the issue of renormalization of the theory is not settled. I will briefly review my path on this issue and give my personal view.