Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy


Abstract in English

The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size $N$ by setting $napprox N$ and exploiting sparsity. In this paper we reconsider the standard choice $n approx N$ through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting $n ll N$ in the large $N$ asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.

Download