No Arabic abstract
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size $N$ by setting $napprox N$ and exploiting sparsity. In this paper we reconsider the standard choice $n approx N$ through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting $n ll N$ in the large $N$ asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.
In this work we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen-Lo`eve expansion, the $L^2$-optimal reduced-rank representation. Numerical evaluation of the Karhunen-Lo`eve expansion is performed once during precomputation and involves computing a numerical eigendecomposition of an integral operator whose kernel is the covariance function of the Gaussian process. The Karhunen-Lo`eve expansion is independent of observed data and depends only on the covariance kernel and the size of the interval on which the Gaussian process is defined. The scheme of this paper does not require translation invariance of the covariance kernel. We also introduce a class of fast algorithms for Bayesian fitting of hyperparameters, and demonstrate the performance of our algorithms with numerical experiments in one and two dimensions. Extensions to higher dimensions are mathematically straightforward but suffer from the standard curses of high dimensions.
We present a performant and rigorous algorithm for certifying that a matrix is close to being a projection onto an irreducible subspace of a given group representation. This addresses a problem arising when one seeks solutions to semi-definite programs (SDPs) with a group symmetry. Indeed, in this context, the dimension of the SDP can be significantly reduced if the irreducible representations of the group action are explicitly known. Rigorous numerical algorithms for decomposing a given group representation into irreps are known, but fairly expensive. To avoid this performance problem, existing software packages -- e.g. RepLAB, which motivated the present work -- use randomized heuristics. While these seem to work well in practice, the problem of to which extent the results can be trusted arises. Here, we provide rigorous guarantees applicable to finite and compact groups, as well as a software implementation that can interface with RepLAB. Under natural assumptions, a commonly used previous method due to Babai and Friedl runs in time O(n^5) for n-dimensional representations. In our approach, the complexity of running both the heuristic decomposition and the certification step is O(max{n^3 log n, D d^2 log d}), where d is the maximum dimension of an irreducible subrepresentation, and D is the time required to multiply elements of the group. A reference implementation interfacing with RepLAB is provided.
The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices, and more complicated structures. Two robust and efficient finite-element discretisation schemes for numerically computing the dynamic Laplacian were proposed in Froyland & Junge (2018). In this work we consider higher-orde
Series expansions of isotropic Gaussian random fields on $mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo`eve expansions of isotropic random fields in terms of spherical harmonics. Their multilevel localized structure of basis functions is especially useful in adaptive algorithms. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed.
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. The framework is grounded on a rich representation of the adaptive mesh suitable for generic finite elements that is built on top of a low-level, light-weight forest-of-trees data structure handled by a specialized, highly parallel adaptive meshing engine, for which we have identified the requirements it must fulfill to be coupled into our framework. Atop this two-layered mesh representation, we build the rest of data structures required for the numerical integration and assembly of the discrete system of linear equations. We consider algorithms that are suitable for both subassembled and fully-assembled distributed data layouts of linear system matrices. The proposed framework has been implemented within the FEMPAR scientific software library, using p4est as a practical forest-of-octrees demonstrator. A strong scaling study of this implementation when applied to Poisson and Maxwell problems reveals remarkable scalability up to 32.2K CPU cores and 482.2M degrees of freedom. Besides, a comparative performance study of FEMPAR and the state-of-the-art deal.ii finite element software shows at least comparative performance, and at most factor 2-3 improvements in the h-adaptive approximation of a Poisson problem with first- and second-order Lagrangian finite elements, respectively.