Do you want to publish a course? Click here

An Evaluation-Focused Framework for Visualization Recommendation Algorithms

259   0   0.0 ( 0 )
 Added by Zehua Zeng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.



rate research

Read More

Visualization recommendation systems simplify exploratory data analysis (EDA) and make understanding data more accessible to users of all skill levels by automatically generating visualizations for users to explore. However, most existing visualization recommendation systems focus on ranking all visualizations into a single list or set of groups based on particular attributes or encodings. This global ranking makes it difficult and time-consuming for users to find the most interesting or relevant insights. To address these limitations, we introduce a novel class of visualization recommendation systems that automatically rank and recommend both groups of related insights as well as the most important insights within each group. Our proposed approach combines results from many different learning-based methods to discover insights automatically. A key advantage is that this approach generalizes to a wide variety of attribute types such as categorical, numerical, and temporal, as well as complex non-trivial combinations of these different attribute types. To evaluate the effectiveness of our approach, we implemented a new insight-centric visualization recommendation system, SpotLight, which generates and ranks annotated visualizations to explain each insight. We conducted a user study with 12 participants and two datasets which showed that users are able to quickly understand and find relevant insights in unfamiliar data.
Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.
Making decisions about what clinical tasks to prepare for is multi-factored, and especially challenging in intensive care environments where resources must be balanced with patient needs. Electronic health records (EHRs) are a rich data source, but are task-agnostic and can be difficult to use as summarizations of patient needs for a specific task, such as could this patient need a ventilator tomorrow? In this paper, we introduce ClinicalVis, an open-source EHR visualization-based prototype system for task-focused design evaluation of interactions between healthcare providers (HCPs) and EHRs. We situate ClinicalVis in a task-focused proof-of-concept design study targeting these interactions with real patient data. We conduct an empirical study of 14 HCPs, and discuss our findings on usability, accuracy, preference, and confidence in treatment decisions. We also present design implications that our findings suggest for future EHR interfaces, the presentation of clinical data for task-based planning, and evaluating task-focused HCP/EHR interactions in practice.
Data visualization should be accessible for all analysts with data, not just the few with technical expertise. Visualization recommender systems aim to lower the barrier to exploring basic visualizations by automatically generating results for analysts to search and select, rather than manually specify. Here, we demonstrate a novel machine learning-based approach to visualization recommendation that learns visualization design choices from a large corpus of datasets and associated visualizations. First, we identify five key design choices made by analysts while creating visualizations, such as selecting a visualization type and choosing to encode a column along the X- or Y-axis. We train models to predict these design choices using one million dataset-visualization pairs collected from a popular online visualization platform. Neural networks predict these design choices with high accuracy compared to baseline models. We report and interpret feature importances from one of these baseline models. To evaluate the generalizability and uncertainty of our approach, we benchmark with a crowdsourced test set, and show that the performance of our model is comparable to human performance when predicting consensus visualization type, and exceeds that of other ML-based systems.
109 - Qing Chen , Fuling Sun , Xinyue Xu 2021
Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا