No Arabic abstract
Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wireless channels, especially in uplink model uploading of FEEL, has been widely recognized as a bottleneck that critically limits the efficiency of FEEL. Although over-the-air computation can alleviate the excessive cost of radio resources in FEEL model uploading, practical implementations of over-the-air FEEL still suffer from several challenges, including strong straggler issues, large communication overheads, and potential privacy leakage. In this article, we study these challenges in over-the-air FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of future wireless systems, to address these challenges. We study the state-of-the-art solutions on RIS-empowered FEEL and explore the promising research opportunities for adopting RIS to enhance FEEL performance.
This paper investigates the model aggregation process in an over-the-air federated learning (AirFL) system, where an intelligent reflecting surface (IRS) is deployed to assist the transmission from users to the base station (BS). With the purpose of overcoming the absence of the security examination against malicious individuals, successive interference cancellation (SIC) is adopted as a basis to support analyzing statistic characteristics of model parameters from devices. The objective of this paper is to minimize the mean-square-error by jointly optimizing the receive beamforming vector at the BS, transmit power allocation at users, and phase shift matrix of the IRS, subject to the transmit power constraint for devices, unit-modulus constraint for reflecting elements, SIC decoding order constraint and quality-of-service constraint. To address this complicated problem, alternating optimization is employed to decompose it into three subproblems, where the optimal receive beamforming vector is obtained by solving the first subproblem with the Lagrange dual method. Then, the convex relaxation method is applied to the transmit power allocation subproblem to find a suboptimal solution. Eventually, the phase shift matrix subproblem is addressed by invoking the semidefinite relaxation. Simulation results validate the availability of IRS and the effectiveness of the proposed scheme in improving federated learning performance.
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are challenging in practice. As such, how to design the maximum likelihood (ML) estimator in the presence of residual channel-gain mismatch and asynchronies is an open problem. To fill this gap, this paper formulates the problem of misaligned OAC for federated edge learning and puts forth a whitened matched filtering and sampling scheme to obtain oversampled, but independent, samples from the misaligned and overlapped signals. Given the whitened samples, a sum-product ML estimator and an aligned-sample estimator are devised to estimate the arithmetic sum of the transmitted symbols. In particular, the computational complexity of our sum-product ML estimator is linear in the packet length and hence is significantly lower than the conventional ML estimator. Extensive simulations on the test accuracy versus the average received energy per symbol to noise power spectral density ratio (EsN0) yield two main results: 1) In the low EsN0 regime, the aligned-sample estimator can achieve superior test accuracy provided that the phase misalignment is non-severe. In contrast, the ML estimator does not work well due to the error propagation and noise enhancement in the estimation process. 2) In the high EsN0 regime, the ML estimator attains the optimal learning performance regardless of the severity of phase misalignment. On the other hand, the aligned-sample estimator suffers from a test-accuracy loss caused by phase misalignment.
Over-the-air computation (AirComp) is a disruptive technique for fast wireless data aggregation in Internet of Things (IoT) networks via exploiting the waveform superposition property of multiple-access channels. However, the performance of AirComp is bottlenecked by the worst channel condition among all links between the IoT devices and the access point. In this paper, a reconfigurable intelligent surface (RIS) assisted AirComp system is proposed to boost the received signal power and thus mitigate the performance bottleneck by reconfiguring the propagation channels. With an objective to minimize the AirComp distortion, we propose a joint design of AirComp transceivers and RIS phase-shifts, which however turns out to be a highly intractable non-convex programming problem. To this end, we develop a novel alternating minimization framework in conjunction with the successive convex approximation technique, which is proved to converge monotonically. To reduce the computational complexity, we transform the subproblem in each alternation as a smooth convex-concave saddle point problem, which is then tackled by proposing a Mirror-Prox method that only involves a sequence of closed-form updates. Simulations show that the computation time of the proposed algorithm can be two orders of magnitude smaller than that of the state-of-the-art algorithms, while achieving a similar distortion performance.
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the waveform superposition property of wireless channels, and thus promises an extremely low aggregation latency that is independent of the network size. However, such communication efficiency may come at a cost of learning performance degradation due to the aggregation error caused by the non-uniform channel fading over devices and noise perturbation. Prior work adopted channel inversion power control (or its variants) to reduce the aggregation error by aligning the channel gains, which, however, could be highly suboptimal in deep fading scenarios due to the noise amplification. To overcome this issue, we investigate the power control optimization for enhancing the learning performance of Air-FEEL. Towards this end, we first analyze the convergence behavior of the Air-FEEL by deriving the optimality gap of the loss-function under any given power control policy. Then we optimize the power control to minimize the optimality gap for accelerating convergence, subject to a set of average and maximum power constraints at edge devices. The problem is generally non-convex and challenging to solve due to the coupling of power control variables over different devices and iterations. To tackle this challenge, we develop an efficient algorithm by jointly exploiting the successive convex approximation (SCA) and trust region methods. Numerical results show that the optimized power control policy achieves significantly faster convergence than the benchmark policies such as channel inversion and uniform power transmission.
This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggregation at each round), we consider a new power control design aiming at directly maximizing the convergence speed. Towards this end, we first analyze the convergence behavior of Air-FEEL (in terms of the optimality gap) subject to aggregation errors at different communication rounds. It is revealed that if the aggregation estimates are unbiased, then the training algorithm would converge exactly to the optimal point with mild conditions; while if they are biased, then the algorithm would converge with an error floor determined by the accumulated estimate bias over communication rounds. Next, building upon the convergence results, we optimize the power control to directly minimize the derived optimality gaps under both biased and unbiased aggregations, subject to a set of average and maximum power constraints at individual edge devices. We transform both problems into convex forms, and obtain their structured optimal solutions, both appearing in a form of regularized channel inversion, by using the Lagrangian duality method. Finally, numerical results show that the proposed power control policies achieve significantly faster convergence for Air-FEEL, as compared with benchmark policies with fixed power transmission or conventional MSE minimization.