No Arabic abstract
The exotic phenomenon of two-neutron halos and 2n-radioactivity are explored in the neutron-rich $^{40,42,44}$Mg by employing various variants of the relativistic mean-field approach. The extended tail of spatial density distributions including the enhanced neutron radii and skin thickness, pairing correlations, single-particle spectrum and wave functions predict $^{40,42,44}$Mg to be strong candidates for deformed neutron halos. Weakening of magicity at N$=$28 plays a significant role in the existence of a weakly bound halo in $^{40}$Mg which is currently the heaviest isotope of Mg accessible experimentally. Large deformation, mixing of f-p shell Nilsson orbitals and the valence neutron occupancy of p-states leads to a reduced centrifugal barrier and broader spatial density distributions that favour 2n-radioactivity in $^{42,44}$Mg.
Nuclei in the $sd$-shell demonstrate a remarkable interplay of cluster and mean-field phenomena. The $N=Z$ nuclei, such as $^{24}$Mg and $^{28}$Si, have been the focus of the theoretical study of both these phenomena in the past. The cluster and vortical mean-field phenomena can be probed by excitation of isoscalar monopole and dipole states in scattering of isoscalar particles such as deuterons or $alpha$ particles. Inelastically scattered $alpha$ particles were momentum-analysed in the K600 magnetic spectrometer at iThemba LABS, Cape Town, South Africa. The scattered particles were detected in two multi-wire drift chambers and two plastic scintillators placed at the focal plane of the K600. In the theoretical discussion, the QRPA and AMD+GCM were used. The QRPA calculations lead us to conclude that: i) the mean-field vorticity appears mainly in dipole states with $K=1$, ii) the dipole (monopole) states should have strong deformation-induced octupole (quadrupole) admixtures, and iii) that near the $alpha$-particle threshold, there should exist a collective state (with $K=0$ for prolate nuclei and $K=1$ for oblate nuclei) with an impressive octupole strength. The results of the AMD+GCM calculations suggest that some observed states may have a mixed (mean-field + cluster) character or correspond to particular cluster configurations. A tentative correspondence between observed states and theoretical states from QRPA and AMD+GCM was established. The QRPA and AMD+GCM analysis shows that low-energy isoscalar dipole states combine cluster and mean-field properties. The QRPA calculations show that the low-energy vorticity is well localized in $^{24}$Mg, fragmented in $^{26}$Mg, and absent in $^{28}$Si.
Recent experimental observation of magicity in $^{78}$Ni has infused the interest to examine the persistence of the magic character across the N$=$50 shell gap in extremely neutron rich exotic nucleus $^{78}$Ni in ground as well as excited states. A systematic study of Ni isotopes and N$=$50 isotones in ground state is performed within the microscopic framework of relativistic mean-field (RMF) and the triaxially deformed Nilson Strutinsky model (NSM). Ground state density distributions, charge form factors, radii, separation energies, pairing energies, single particle energies and the shell corrections show strong magicity in $^{78}$Ni. Excited nuclei are treated within the statistical theory of hot rotating nuclei where the variation of level density parameter and entropy shows significant magicity with a deep minima at N$=$50, which, persists up to the temperatures $approx$ 1.5$-$2 MeV and then slowly disappear with increasing temperature. Rotational states are evaluated and effect of rotation on N$=$50 (Z$=$20$-$30) isotones are studied. Our results agree very well with the available experimental data and few other theoretical calculations.
The breakup cross section (BUX) of 22C by 12C at 250 MeV/nucleon is evaluated by the continuum-discretized coupled-channels method incorporating the cluster-orbital shell model (COSM) wave functions. Contributions of the low-lying 0+_2 and 2+_1 resonances predicted by COSM to the BUX are investigated. The 2+_1 resonance gives a narrow peak in the BUX, as in usual resonant reactions, whereas the 0+_2 resonant cross section has a peculiar shape due to the coupling to the nonresonant continuum, i.e., the Fano effect. By changing the scattering angle of 22C after the breakup, a variety of shapes of the 0+_2 resonant cross sections is obtained. Mechanism of the appearance of the sizable Fano effect in the breakup of 22C is discussed.
The cross sections of the nuclear reactions induced by neutrons at $E_n$= 14.6 MeV on the isotopes of Dy, Er, Yb with emission of neutrons, proton and alpha-particle are studied by the use of new experimental data and different theoretical approaches. New and improved experimental data are measured by the neutron-activation technique. The experimental and evaluated data from EXFOR, TENDL, ENDF libraries are compared with different systematics and calculations by codes of EMPIRE~3.0 and TALYS~1.2. Contribution of pre-equilibrium decay is discussed. Different systematics for estimations of the cross-sections of considered nuclear reactions are tested.
It is known that nuclear deformation plays an important role in inducing the halo structure in neutron-rich nuclei by mixing several angular momentum components. While previous theoretical studies on this problem in the literature assume axially symmetric deformation, we here consider non-axially symmetric deformations. With triaxial deformation, the $Omega$ quantum number is admixed in a single-particle wave function, where $Omega$ is the projection of the single-particle angular momentum on the symmetric axis, and the halo structure may arise even when it is absent with the axially symmetric deformation. In this way, the area of halo nuclei may be extended when triaxial deformation is considered. We demonstrate this idea using a deformed Woods-Saxon potential for nuclei with neutron number N=13 and 43.