Slowly cooling white dwarfs in M13 from stable hydrogen burning


Abstract in English

White Dwarfs (WDs) are the final evolutionary product of the vast majority of stars in the Universe. They are electron-degenerate structures characterized by no stable thermonuclear activity, and their evolution is generally described as a pure cooling process. Their cooling rate is adopted as cosmic chronometer to constrain the age of several Galactic populations, including the disk, globular and open clusters. By analysing high-resolution photometric data of two twin Galactic globular clusters (M3 and M13), we find a clear-cut and unexpected over-abundance of bright WDs in M13. Theoretical models suggest that, consistently with the horizontal branch morphology, this over-abundance is due to a slowing down of the cooling process in ~70% of the WDs in M13, caused by stable thermonuclear burning in their residual hydrogen-rich envelope. This is the first observational evidence of quiescent thermonuclear activity occurring in cooling WDs and it brings new attention on the use of the WD cooling rate as cosmic chronometer for low metallicity environments.

Download