No Arabic abstract
We obtain the distribution amplitude (DA) of the pion from its light-front wave functions in the basis light-front quantization framework. This light-front wave function of the pion is given by the lowest eigenvector of a light-front effective Hamiltonian consisting a three-dimensional confinement potential and the color-singlet Nambu--Jona-Lasinion interaction both between the constituent quark and antiquark. The quantum chromodynamics (QCD) evolution of the DA is subsequently given by the perturbative Efremov-Radyushkin-Brodsky-Lepage evolution equation. Based on this DA, we then evaluate the singly and doubly virtual transition form factors in the space-like region for $pi^0rightarrow gamma^*gamma$ and $pi^0rightarrow gamma^*gamma^*$ processes using the hard-scattering formalism. Our prediction for the pion-photon transition form factor agrees well with data reported by the Belle Collaboration. However, in the large $Q^2$ region it deviates from the rapid growth reported by the BaBar Collaboration. Meanwhile, our result on the $pi^0rightarrow gamma^*gamma^*$ transition form factor is also consistent with other theoretical approaches and agrees with the scaling behavior predicted by perturbative QCD.
We investigate the electromagnetic form factors of the nucleon in the framework of basis light front quantization. We compute the form factors using the light front wavefunctions obtained by diagonalizing the effective Hamiltonian consisting of the holographic QCD confinement potential, the longitudinal confinement, and a one-gluon exchange interaction with fixed coupling. The electromagnetic radii of the nucleon are also computed.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunctions are generated by solving the eigenvalue equation in a basis light-front quantization. Fitting the model parameters, the wavefunctions lead to good simultaneous description of electromagnetic form factors, radii, and parton distribution functions for the proton.
We predict the $mathcal{V} to mathcal{P} gamma$ decay widths and the $mathcal{V} to mathcal{P} gamma^{*}$ transition form factors, where $mathcal{V}=(rho, omega, K^*, phi)$ and $mathcal{P}= (pi,K, eta,eta^prime)$, using spin-improved holographic light-front wavefunctions for the mesons. We find excellent agreement with the available data for both the decay widths and the timelike transition form factors extracted from the leptonic conversion decays $mathcal{V} to mathcal{P} l^+ l^-$.
We produce the light-front wave functions (LFWFs) of the nucleon from a basis light-front ap- proach in the leading Fock sector representation. We solve for the mass eigenstates from a light-front effective Hamiltonian, which includes a confining potential adopted from light-front holography in the transverse direction, a longitudinal confinement, and a one-gluon exchange interaction with fixed coupling. We then employ the LFWFs to obtain the electromagnetic and axial form factors, the par- ton distribution functions (PDFs) and the generalized parton distribution functions for the nucleon. The electromagnetic and axial form factors of the proton agree with the experimental data, whereas the neutron form factors deviate somewhat from the experiments in the low momentum transfer region. The unpolarized, the helicity, and the transversity valence quark PDFs, after QCD scale evolution, are fairly consistent with the global fits to the data at the relevant experimental scales. The helicity asymmetry for the down quark also agrees well with the measurements, however, the asymmetry for the up quark shows a deviation from the data, especially in the small x region. We also find that the tensor charge agrees well with the extracted data and the lattice QCD predictions, while the axial charge is somewhat outside the experimental error bar. The electromagnetic radii of the proton, the magnetic radius of the neutron, and the axial radius are in excellent agreement with the measurements, while the neutron charge radius deviates from experiment.
In an explicitly covariant light-front formalism, we analyze transition form factors between pseudoscalar and scalar mesons. Application is performed in case of the $B to f_0(980)$ transition in the full available transfer momentum range $q^2$.