Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for the glass transition. Our approach provides an unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.
The specific heat capacity $c_v$ of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger $c_v$ and a more pronounced hysteresis for fragile glasses than for strong ones. Here, we show that these experimental features, including the unusually large magnitude of $c_v$ of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model (DPLM) incorporating a two-state picture of particle interactions. The large $c_v$ in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.
We study non-equilibrium phases for interacting two-dimensional self-propelled particles with isotropic pair-wise interactions using a persistent kinetic Monte Carlo (MC) approach. We establish the quantitative phase diagram, including the motility-induced phase separation (MIPS) that is a commonly observed collective phenomena in active matter. In addition, we demonstrate for several different potential forms the presence of two-step melting, with an intermediate hexatic phase, in regions far from equilibrium. Increased activity can melt a two-dimensional solid and the melting lines remain disjoint from MIPS. We establish this phase diagram for a range of the inter-particle potential stiffnesses, and identify the MIPS phase even in the hard-disk limit. We establish that the full description of the phase behavior requires three independent control parameters.
The non-equilibrium dynamics of condensation phenomena in nano-pores is studied via Monte Carlo simulation of a lattice gas model. Hysteretic behavior of the particle density as a function of the density of a reservoir is obtained for various pore geometries in two and three dimensions. The shape of the hysteresis loops depend on the characteristics of the pore geometry. The evaporation of particles from a pore can be fitted to a stretched exponential decay of the particle density $rho_f(t) sim exp [ -(t/tau)^beta]$. Phase separation dynamics inside the pore is effectively described by a random walk of the non-wetting phases. Domain evolution is significantly slowed down in presence of random wall-particle potential and gives rise to a temperature dependent growth exponent. On the other hand roughness of the pore wall only delays the onset of a pure domain growth.
We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze the universality principles of this dynamic transition for various values of the crystal-field coupling at the originally second-order regime of the corresponding equilibrium phase diagram of the model. A detailed finite-size scaling analysis indicates that the observed nonequilibrium phase transition belongs to the universality class of the equilibrium Ising ferromagnet with additional logarithmic corrections in the scaling behavior of the heat capacity. Our results are in agreement with earlier works on kinetic Ising models.
We consider the use of a Kinetic Monte Carlo approach for the description of non-equilibrium bosonic systems, taking non-resonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered approach allows the study of the cross-over between incoherent and coherent regimes, which represents the formation of a quasi-condensate that forms purely from the action of energy relaxation processes rather than interactions between the condensing particles themselves. In the latter case, we show that a bosonic cascade can theoretically develop an output coherent state.