Do you want to publish a course? Click here

Find Bugs in Static Bug Finders

112   0   0.0 ( 0 )
 Added by Song Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Static bug finders have been widely-adopted by developers to find bugs in real world software projects. They leverage predefined heuristic static analysis rules to scan source code or binary code of a software project, and report violations to these rules as warnings to be verified. However, the advantages of static bug finders are overshadowed by such issues as uncovered obvious bugs, false positives, etc. To improve these tools, many techniques have been proposed to filter out false positives reported or design new static analysis rules. Nevertheless, the under-performance of bug finders can also be caused by the incorrectness of current rules contained in the static bug finders, which is not explored yet. In this work, we propose a differential testing approach to detect bugs in the rules of four widely-used static bug finders, i.e., SonarQube, PMD, SpotBugs, and ErrorProne, and conduct a qualitative study about the bugs found. To retrieve paired rules across static bug finders for differential testing, we design a heuristic-based rule mapping method which combines the similarity in rules description and the overlap in warning information reported by the tools. The experiment on 2,728 open source projects reveals 46 bugs in the static bug finders, among which 24 are fixed or confirmed and the left are awaiting confirmation. We also summarize 13 bug patterns in the static analysis rules based on their context and root causes, which can serve as the checklist for designing and implementing other rules and or in other tools. This study indicates that the commonly-used static bug finders are not as reliable as they might have been envisaged. It not only demonstrates the effectiveness of our approach, but also highlights the need to continue improving the reliability of the static bug finders.



rate research

Read More

Open source projects often maintain open bug repositories during development and maintenance, and the reporters often point out straightly or implicitly the reasons why bugs occur when they submit them. The comments about a bug are very valuable for developers to locate and fix the bug. Meanwhile, it is very common in large software for programmers to override or overload some methods according to the same logic. If one method causes a bug, it is obvious that other overridden or overloaded methods maybe cause related or similar bugs. In this paper, we propose and implement a tool Rebug- Detector, which detects related bugs using bug information and code features. Firstly, it extracts bug features from bug information in bug repositories; secondly, it locates bug methods from source code, and then extracts code features of bug methods; thirdly, it calculates similarities between each overridden or overloaded method and bug methods; lastly, it determines which method maybe causes potential related or similar bugs. We evaluate Rebug-Detector on an open source project: Apache Lucene-Java. Our tool totally detects 61 related bugs, including 21 real bugs and 10 suspected bugs, and it costs us about 15.5 minutes. The results show that bug features and code features extracted by our tool are useful to find real bugs in existing projects.
Bug patterns are erroneous code idioms or bad coding practices that have been proved to fail time and time again, which are usually caused by the misunderstanding of a programming languages features, the use of erroneous design patterns, or simple mistakes sharing common behaviors. This paper identifies and categorizes some bug patterns in the quantum programming language Qiskit and briefly discusses how to eliminate or prevent those bug patterns. We take this research as the first step to provide an underlying basis for debugging and testing quantum programs.
Numerous efforts have been invested in improving the effectiveness of bug localization techniques, whereas little attention is paid to making these tools run more efficiently in continuously evolving software repositories. This paper first analyzes the information retrieval model behind a classic bug localization tool, BugLocator, and builds a mathematical foundation illustrating that the model can be updated incrementally when codebase or bug reports evolve. Then, we present IncBL, a tool for Incremental Bug Localization in evolving software repositories. IncBL is evaluated on the Bugzbook dataset, and the results show that IncBL can significantly reduce the running time by 77.79% on average compared with the re-computing the model, while maintaining the same level of accuracy. We also implement IncBL as a Github App that can be easily integrated into open-source projects on GitHub. Users can deploy and use IncBL locally as well. The demo video for IncBL can be viewed at https://youtu.be/G4gMuvlJSb0, and the source code can be found at https://github.com/soarsmu/IncBL.
71 - Yaohui Chen , Peng Li , Jun Xu 2019
Hybrid testing combines fuzz testing and concolic execution. It leverages fuzz testing to test easy-to-reach code regions and uses concolic execution to explore code blocks guarded by complex branch conditions. However, its code coverage-centric design is inefficient in vulnerability detection. First, it blindly selects seeds for concolic execution and aims to explore new code continuously. However, as statistics show, a large portion of the explored code is often bug-free. Therefore, giving equal attention to every part of the code during hybrid testing is a non-optimal strategy. It slows down the detection of real vulnerabilities by over 43%. Second, classic hybrid testing quickly moves on after reaching a chunk of code, rather than examining the hidden defects inside. It may frequently miss subtle vulnerabilities despite that it has already explored the vulnerable code paths. We propose SAVIOR, a new hybrid testing framework pioneering a bug-driven principle. Unlike the existing hybrid testing tools, SAVIOR prioritizes the concolic execution of the seeds that are likely to uncover more vulnerabilities. Moreover, SAVIOR verifies all vulnerable program locations along the executing program path. By modeling faulty situations using SMT constraints, SAVIOR reasons the feasibility of vulnerabilities and generates concrete test cases as proofs. Our evaluation shows that the bug-driven approach outperforms mainstream automated testing techniques, including state-of-the-art hybrid testing systems driven by code coverage. On average, SAVIOR detects vulnerabilities 43.4% faster than DRILLER and 44.3% faster than QSYM, leading to the discovery of 88 and 76 more uniquebugs,respectively.Accordingtotheevaluationon11 well fuzzed benchmark programs, within the first 24 hours, SAVIOR triggers 481 UBSAN violations, among which 243 are real bugs.
Background: Performance bugs can lead to severe issues regarding computation efficiency, power consumption, and user experience. Locating these bugs is a difficult task because developers have to judge for every costly operation whether runtime is consumed necessarily or unnecessarily. Objective: We wanted to investigate how developers, when locating performance bugs, navigate through the code, understand the program, and communicate the detected issues. Method: We performed a qualitative user study observing twelve developers trying to fix documented performance bugs in two open source projects. The developers worked with a profiling and analysis tool that visually depicts runtime information in a list representation and embedded into the source code view. Results: We identified typical navigation strategies developers used for pinpointing the bug, for instance, following method calls based on runtime consumption. The integration of visualization and code helped developers to understand the bug. Sketches visualizing data structures and algorithms turned out to be valuable for externalizing and communicating the comprehension process for complex bugs. Conclusion: Fixing a performance bug is a code comprehension and navigation problem. Flexible navigation features based on executed methods and a close integration of source code and performance information support the process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا