Do you want to publish a course? Click here

Efficient Combinatorial Optimization for Word-level Adversarial Textual Attack

103   0   0.0 ( 0 )
 Added by Shengcai Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Over the past few years, various word-level textual attack approaches have been proposed to reveal the vulnerability of deep neural networks used in natural language processing. Typically, these approaches involve an important optimization step to determine which substitute to be used for each word in the original input. However, current research on this step is still rather limited, from the perspectives of both problem-understanding and problem-solving. In this paper, we address these issues by uncovering the theoretical properties of the problem and proposing an efficient local search algorithm (LS) to solve it. We establish the first provable approximation guarantee on solving the problem in general cases. Notably, for adversarial textual attack, it is even better than the previous bound which only holds in special case. Extensive experiments involving five NLP tasks, six datasets and eleven NLP models show that LS can largely reduce the number of queries usually by an order of magnitude to achieve high attack success rates. Further experiments show that the adversarial examples crafted by LS usually have higher quality, exhibit better transferability, and can bring more robustness improvement to victim models by adversarial training.



rate research

Read More

104 - Dianqi Li , Yizhe Zhang , Hao Peng 2020
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that are agnostic to the context, often resulting in unnatural and ungrammatical outputs. This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs through a mask-then-infill procedure. CLARE builds on a pre-trained masked language model and modifies the inputs in a context-aware manner. We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs of varied lengths. With a richer range of available strategies, CLARE is able to attack a victim model more efficiently with fewer edits. Extensive experiments and human evaluation demonstrate that CLARE outperforms the baselines in terms of attack success rate, textual similarity, fluency and grammaticality.
221 - Yangyi Chen , Jin Su , Wei Wei 2021
Recently, the textual adversarial attack models become increasingly popular due to their successful in estimating the robustness of NLP models. However, existing works have obvious deficiencies. (1) They usually consider only a single granularity of modification strategies (e.g. word-level or sentence-level), which is insufficient to explore the holistic textual space for generation; (2) They need to query victim models hundreds of times to make a successful attack, which is highly inefficient in practice. To address such problems, in this paper we propose MAYA, a Multi-grAnularitY Attack model to effectively generate high-quality adversarial samples with fewer queries to victim models. Furthermore, we propose a reinforcement-learning based method to train a multi-granularity attack agent through behavior cloning with the expert knowledge from our MAYA algorithm to further reduce the query times. Additionally, we also adapt the agent to attack black-box models that only output labels without confidence scores. We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets. Experimental results show that our models achieve overall better attacking performance and produce more fluent and grammatical adversarial samples compared to baseline models. Besides, our adversarial attack agent significantly reduces the query times in both attack settings. Our codes are released at https://github.com/Yangyi-Chen/MAYA.
Textual adversarial attacking has received wide and increasing attention in recent years. Various attack models have been proposed, which are enormously distinct and implemented with different programming frameworks and settings. These facts hinder quick utilization and apt comparison of attack models. In this paper, we present an open-source textual adversarial attack toolkit named OpenAttack. It currently builds in 12 typical attack models that cover all the attack types. Its highly inclusive modular design not only supports quick utilization of existing attack models, but also enables great flexibility and extensibility. OpenAttack has broad uses including comparing and evaluating attack models, measuring robustness of a victim model, assisting in developing new attack models, and adversarial training. Source code, built-in models and documentation can be obtained at https://github.com/thunlp/OpenAttack.
Research shows that natural language processing models are generally considered to be vulnerable to adversarial attacks; but recent work has drawn attention to the issue of validating these adversarial inputs against certain criteria (e.g., the preservation of semantics and grammaticality). Enforcing constraints to uphold such criteria may render attacks unsuccessful, raising the question of whether valid attacks are actually feasible. In this work, we investigate this through the lens of human language ability. We report on crowdsourcing studies in which we task humans with iteratively modifying words in an input text, while receiving immediate model feedback, with the aim of causing a sentiment classification model to misclassify the example. Our findings suggest that humans are capable of generating a substantial amount of adversarial examples using semantics-preserving word substitutions. We analyze how human-generated adversarial examples compare to the recently proposed TextFooler, Genetic, BAE and SememePSO attack algorithms on the dimensions naturalness, preservation of sentiment, grammaticality and substitution rate. Our findings suggest that human-generated adversarial examples are not more able than the best algorithms to generate natural-reading, sentiment-preserving examples, though they do so by being much more computationally efficient.
The adversarial attacks against deep neural networks on computer vision tasks have spawned many new technologies that help protect models from avoiding false predictions. Recently, word-level adversarial attacks on deep models of Natural Language Processing (NLP) tasks have also demonstrated strong power, e.g., fooling a sentiment classification neural network to make wrong decisions. Unfortunately, few previous literatures have discussed the defense of such word-level synonym substitution based attacks since they are hard to be perceived and detected. In this paper, we shed light on this problem and propose a novel defense framework called Random Substitution Encoding (RSE), which introduces a random substitution encoder into the training process of original neural networks. Extensive experiments on text classification tasks demonstrate the effectiveness of our framework on defense of word-level adversarial attacks, under various base and attack models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا