Do you want to publish a course? Click here

Towards a Larger Molecular Simulation on the Quantum Computer: Up to 28 Qubits Systems Accelerated by Point Group Symmetry

259   0   0.0 ( 0 )
 Added by Dingshun Lv
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exact evaluation of the molecular ground state in quantum chemistry requires an exponential increasing computational cost. Quantum computation is a promising way to overcome the exponential problem using polynomial-time quantum algorithms. A quantum-classical hybrid optimization scheme known as the variational quantum eigensolver (VQE) is preferred for this task for noisy intermediate-scale quantum devices. However, the circuit depth becomes one of the bottlenecks of its application to large molecules of more than 20 qubits. In this work, we propose a new strategy by employing the point group symmetry to reduce the number of operators in constructing ansatz to achieve a more compact quantum circuit. We illustrate this methodology with a series of molecules ranging from LiH (12 qubits) to C2H4 (28 qubits). A significant reduction of up to 82% of the operator numbers is reached on C2H4, which enables the largest molecule ever simulated by VQE to the best of our knowledge.



rate research

Read More

A key requirement to perform simulations of large quantum systems on near-term quantum hardware is the design of quantum algorithms with short circuit depth that finish within the available coherence time. A way to stay within the limits of coherence is to reduce the number of gates by implementing a gate set that matches the requirements of the specific algorithm of interest directly in hardware. Here, we show that exchange-type gates are a promising choice for simulating molecular eigenstates on near-term quantum devices since these gates preserve the number of excitations in the system. Complementing the theoretical work by Barkoutsos et al. [PRA 98, 022322 (2018)], we report on the experimental implementation of a variational algorithm on a superconducting qubit platform to compute the eigenstate energies of molecular hydrogen. We utilize a parametrically driven tunable coupler to realize exchange-type gates that are configurable in amplitude and phase on two fixed-frequency superconducting qubits. With gate fidelities around 95% we are able to compute the eigenstates within an accuracy of 50 mHartree on average, a limit set by the coherence time of the tunable coupler.
Simulating molecules is believed to be one of the early-stage applications for quantum computers. Current state-of-the-art quantum computers are limited in size and coherence, therefore optimizing resources to execute quantum algorithms is crucial. In this work, we develop the second quantization representation of the spatial-symmetries which are then transformed to their qubit operator representation. These qubit operator representations are used to reduce the number of qubits required for simulating molecules. We present our results for various molecules and elucidate a formal connection of this work with a previous technique that analyzed generic $Z_2$ Pauli symmetries.
We provide fast algorithms for simulating many body Fermi systems on a universal quantum computer. Both first and second quantized descriptions are considered, and the relative computational complexities are determined in each case. In order to accommodate fermions using a first quantized Hamiltonian, an efficient quantum algorithm for anti-symmetrization is given. Finally, a simulation of the Hubbard model is discussed in detail.
In astrophysical scenarios with large neutrino density, like supernovae and the early universe, the presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the out-of-equilibrium collective dynamics of a neutrino cloud. The role of quantum correlations in these phenomena is not yet well understood, in large part due to complications in solving for the real-time evolution of the strongly coupled many-body system. Future fault-tolerant quantum computers hold the promise to overcome much of these limitations and provide direct access to the correlated neutrino dynamic. In this work, we present the first simulation of a small system of interacting neutrinos using current generation quantum devices. We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time. The results show the critical importance of error-mitigation techniques to extract meaningful results for entanglement measures using noisy, near term, quantum devices.
Quantum Monte Carlo and quantum simulation are both important tools for understanding quantum many-body systems. As a classical algorithm, quantum Monte Carlo suffers from the sign problem, preventing its applications to most fermion systems and real time dynamics. In this paper, we introduce a novel non-variational algorithm using quantum simulation as a subroutine to accelerate quantum Monte Carlo by easing the sign problem. The quantum subroutine can be implemented with shallow circuits and, by incorporating error mitigation, reduce the Monte Carlo variance by orders of magnitude even when the circuit noise is significant. As such, the proposed quantum algorithm is applicable to near-term noisy quantum hardware.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا