Phyllotaxis-inspired Nanosieves with Multiplexed Orbital Angular Momentum


Abstract in English

Nanophotonic platforms such as metasurfaces, achieving arbitrary phase profiles within ultrathin thickness, emerge as miniaturized, ultracompact and kaleidoscopic optical vortex generators. However, it is often required to segment or interleave independent subarray metasurfaces to multiplex optical vortices in a single nano device, which in turn affects the compactness and channel capacity of the device. Here, inspired by phyllotaxis patterns in pine cones and sunflowers, we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve, both in free space and on a chip, where one metaatom may contribute to many vortices simultaneously. The time resolved dynamics of on chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy. Our nature inspired optical vortex generator would facilitate various vortex related optical applications, including structured wavefront shaping, free space and plasmonic vortices, and high capacity information metaphotonics.

Download