No Arabic abstract
We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and mobility, the feasibility of an individual to change their position in the income distribution. For this purpose, we explore the properties of an established model for income growth that includes resetting as a stabilising force which ensures stationary dynamics. We find that the dynamics of inequality is regime-dependent and may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodic behaviour. Mobility measures, conversely, are always stable over time, but the stationary value is dependent on the regime, suggesting that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the dynamics of income share of the top earners in the United States, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterises inequality and immobility dynamics. Our results can serve as a simple rationale for the observed real world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe.
This paper experimentally studies whether individuals hold a first-order belief that others apply Bayes rule to incorporate private information into their beliefs, which is a fundamental assumption in many Bayesian and non-Bayesian social learning models. We design a novel experimental setting in which the first-order belief assumption implies that social information is equivalent to private information. Our main finding is that participants reported reservation prices of social information are significantly lower than those of private information, which provides evidence that casts doubt on the first-order belief assumption. We also build a novel belief error model in which participants form a random posterior belief with a Bayesian posterior belief kernel to explain the experimental findings. A structural estimation of the model suggests that participants sophisticated consideration of others belief error and their exaggeration of the error both contribute to the difference in reservation prices.
We study the consequences of job markets heavy reliance on referrals. Referrals screen candidates and lead to better matches and increased productivity, but disadvantage job-seekers who have few or no connections to employed workers, leading to increased inequality. Coupled with homophily, referrals also lead to immobility: a demographic groups low current employment rate leads that group to have relatively low future employment as well. We identify conditions under which distributing referrals more evenly across a population not only reduces inequality, but also improves future productivity and economic mobility. We use the model to examine optimal policies, showing that one-time affirmative action policies involve short-run production losses, but lead to long-term improvements in equality, mobility, and productivity due to induced changes in future referrals. We also examine how the possibility of firing workers changes the effects of referrals.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption) and their probability of infecting and of being infected. Strategic complementarities among individual mobility choices drive the evolution of aggregate economic activity, while infection externalities caused by individual mobility affect disease diffusion. Rational expectations of forward looking agents on the dynamics of aggregate mobility and epidemic determine individual mobility decisions. The model allows to evaluate alternative scenarios of mobility restrictions, especially policies dependent on the state of epidemic. We prove the existence of an equilibrium and provide a recursive construction method for finding equilibrium(a), which also guides our numerical investigations. We calibrate the model by using Italian experience on COVID-19 epidemic in the period February 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a substantially different dynamics of economy and epidemic with respect to a SIRD model with constant agents mobility. Finally, by numerical explorations we illustrate how the model can be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which mitigates the epidemic peaks stressing health system, and allows for trading-off the economic losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
We study the conditions under which input-output networks can dynamically attain competitive equilibrium, where markets clear and profits are zero. We endow a classical firm network model with simple dynamical rules that reduce supply/demand imbalances and excess profits. We show that the time needed to reach equilibrium diverges as the system approaches an instability point beyond which the Hawkins-Simons condition is violated and competitive equilibrium is no longer realisable. We argue that such slow dynamics is a source of excess volatility, through accumulation and amplification of exogenous shocks. Factoring in essential physical constraints, such as causality or inventory management, we propose a dynamically consistent model that displays a rich variety of phenomena. Competitive equilibrium can only be reached after some time and within some region of parameter space, outside of which one observes periodic and chaotic phases, reminiscent of real business cycles. This suggests an alternative explanation of the excess volatility that is of purely endogenous nature. Other regimes include deflationary equilibria and intermittent crises characterised by bursts of inflation. Our model can be calibrated using highly disaggregated data on individual firms and prices, and may provide a powerful tool to describe out-of-equilibrium economies.
The potential impact of automation on the labor market is a topic that has generated significant interest and concern amongst scholars, policymakers, and the broader public. A number of studies have estimated occupation-specific risk profiles by examining the automatability of associated skills and tasks. However, relatively little work has sought to take a more holistic view on the process of labor reallocation and how employment prospects are impacted as displaced workers transition into new jobs. In this paper, we develop a new data-driven model to analyze how workers move through an empirically derived occupational mobility network in response to automation scenarios which increase labor demand for some occupations and decrease it for others. At the macro level, our model reproduces a key stylized fact in the labor market known as the Beveridge curve and provides new insights for explaining the curves counter-clockwise cyclicality. At the micro level, our model provides occupation-specific estimates of changes in short and long-term unemployment corresponding to a given automation shock. We find that the network structure plays an important role in determining unemployment levels, with occupations in particular areas of the network having very few job transition opportunities. Such insights could be fruitfully applied to help design more efficient and effective policies aimed at helping workers adapt to the changing nature of the labor market.