Do you want to publish a course? Click here

RiWNet: A moving object instance segmentation Network being Robust in adverse Weather conditions

284   0   0.0 ( 0 )
 Added by Chenjie Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Segmenting each moving object instance in a scene is essential for many applications. But like many other computer vision tasks, this task performs well in optimal weather, but then adverse weather tends to fail. To be robust in weather conditions, the usual way is to train network in data of given weather pattern or to fuse multiple sensors. We focus on a new possibility, that is, to improve its resilience to weather interference through the networks structural design. First, we propose a novel FPN structure called RiWFPN with a progressive top-down interaction and attention refinement module. RiWFPN can directly replace other FPN structures to improve the robustness of the network in non-optimal weather conditions. Then we extend SOLOV2 to capture temporal information in video to learn motion information, and propose a moving object instance segmentation network with RiWFPN called RiWNet. Finally, in order to verify the effect of moving instance segmentation in different weather disturbances, we propose a VKTTI-moving dataset which is a moving instance segmentation dataset based on the VKTTI dataset, taking into account different weather scenes such as rain, fog, sunset, morning as well as overcast. The experiment proves how RiWFPN improves the networks resilience to adverse weather effects compared to other FPN structures. We compare RiWNet to several other state-of-the-art methods in some challenging datasets, and RiWNet shows better performance especially under adverse weather conditions.

rate research

Read More

Instance-level object segmentation is an important yet under-explored task. The few existing studies are almost all based on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Nonetheless, generating accurate region proposals itself is quite challenging. In this work, we propose a Proposal-Free Network (PFN ) to address the instance-level object segmentation problem, which outputs the instance numbers of different categories and the pixel-level information on 1) the coordinates of the instance bounding box each pixel belongs to, and 2) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained in an end-to-end way without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed PFN solution well beats the state-of-the-arts for instance-level object segmentation. In particular, the $AP^r$ over 20 classes at 0.5 IoU reaches 58.7% by PFN, significantly higher than 43.8% and 46.3% by the state-of-the-art algorithms, SDS [9] and [16], respectively.
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars. However, they are known to be sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR). As a result, lidar-based object detectors trained on data captured in normal weather tend to perform poorly in such scenarios. However, collecting and labelling sufficient training data in a diverse range of adverse weather conditions is laborious and prohibitively expensive. To address this issue, we propose a physics-based approach to simulate lidar point clouds of scenes in adverse weather conditions. These augmented datasets can then be used to train lidar-based detectors to improve their all-weather reliability. Specifically, we introduce a hybrid Monte-Carlo based approach that treats (i) the effects of large particles by placing them randomly and comparing their back reflected power against the target, and (ii) attenuation effects on average through calculation of scattering efficiencies from the Mie theory and particle size distributions. Retraining networks with this augmented data improves mean average precision evaluated on real world rainy scenes and we observe greater improvement in performance with our model relative to existing models from the literature. Furthermore, we evaluate recent state-of-the-art detectors on the simulated weather conditions and present an in-depth analysis of their performance.
In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predicts bounding box offsets for refining the object proposal locations, and an instance-level segmentation sub-network that generates the foreground mask of the dominant object instance in each proposal. By being recursive, R2-IOS iteratively optimizes the two sub-networks during joint training, in which the refined object proposals and improved segmentation predictions are alternately fed into each other to progressively increase the network capabilities. By being reversible, the proposal refinement sub-network adaptively determines an optimal number of refinement iterations required for each proposal during both training and testing. Furthermore, to handle multiple overlapped instances within a proposal, an instance-aware denoising autoencoder is introduced into the segmentation sub-network to distinguish the dominant object from other distracting instances. Extensive experiments on the challenging PASCAL VOC 2012 benchmark well demonstrate the superiority of R2-IOS over other state-of-the-art methods. In particular, the $text{AP}^r$ over $20$ classes at $0.5$ IoU achieves $66.7%$, which significantly outperforms the results of $58.7%$ by PFN~cite{PFN} and $46.3%$ by~cite{liu2015multi}.
Instance segmentation of biological images is essential for studying object behaviors and properties. The challenges, such as clustering, occlusion, and adhesion problems of the objects, make instance segmentation a non-trivial task. Current box-free instance segmentation methods typically rely on local pixel-level information. Due to a lack of global object view, these methods are prone to over- or under-segmentation. On the contrary, the box-based instance segmentation methods incorporate object detection into the segmentation, performing better in identifying the individual instances. In this paper, we propose a new box-based instance segmentation method. Mainly, we locate the object bounding boxes from their center points. The object features are subsequently reused in the segmentation branch as a guide to separate the clustered instances within an RoI patch. Along with the instance normalization, the model is able to recover the target object distribution and suppress the distribution of neighboring attached objects. Consequently, the proposed model performs excellently in segmenting the clustered objects while retaining the target object details. The proposed method achieves state-of-the-art performances on three biological datasets: cell nuclei, plant phenotyping dataset, and neural cells.
Adverse weather conditions are very challenging for autonomous driving because most of the state-of-the-art sensors stop working reliably under these conditions. In order to develop robust sensors and algorithms, tests with current sensors in defined weather conditions are crucial for determining the impact of bad weather for each sensor. This work describes a testing and evaluation methodology that helps to benchmark novel sensor technologies and compare them to state-of-the-art sensors. As an example, gated imaging is compared to standard imaging under foggy conditions. It is shown that gated imaging outperforms state-of-the-art standard passive imaging due to time-synchronized active illumination.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا