Manifolds of mappings on cartesian products


Abstract in English

Given smooth manifolds $M_1,ldots, M_n$ (which may have a boundary or corners), a smooth manifold $N$ modeled on locally convex spaces and $alphain({mathbb N}_0cup{infty})^n$, we consider the set $C^alpha(M_1timescdotstimes M_n,N)$ of all mappings $fcolon M_1timescdotstimes M_nto N$ which are $C^alpha$ in the sense of Alzaareer. Such mappings admit, simultaneously, continuous iterated directional derivatives of orders $leq alpha_j$ in the $j$th variable for $jin{1,ldots, n}$, in local charts. We show that $C^alpha(M_1timescdotstimes M_n,N)$ admits a canonical smooth manifold structure whenever each $M_j$ is compact and $N$ admits a local addition. The case of non-compact domains is also considered.

Download