Do you want to publish a course? Click here

On the proof complexity of MCSAT

78   0   0.0 ( 0 )
 Added by Gereon Kremer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Satisfiability Modulo Theories (SMT) and SAT solvers are critical components in many formal software tools, primarily due to the fact that they are able to easily solve logical problem instances with millions of variables and clauses. This efficiency of solvers is in surprising contrast to the traditional complexity theory position that the problems that these solvers address are believed to be hard in the worst case. In an attempt to resolve this apparent discrepancy between theory and practice, theorists have proposed the study of these solvers as proof systems that would enable establishing appropriate lower and upper bounds on their complexity. For example, in recent years it has been shown that (idealized models of) SAT solvers are polynomially equivalent to the general resolution proof system for propositional logic, and SMT solvers that use the CDCL(T) architecture are polynomially equivalent to the Res*(T) proof system. In this paper, we extend this program to the MCSAT approach for SMT solving by showing that the MCSAT architecture is polynomially equivalent to the Res*(T) proof system. Thus, we establish an equivalence between CDCL(T) and MCSAT from a proof-complexity theoretic point of view. This is a first and essential step towards a richer theory that may help (parametrically) characterize the kinds of formulas for which MCSAT-based SMT solvers can perform well.



rate research

Read More

This paper studies parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set of parameters. Fixing values for all parameters yields MDPs. In particular, this paper studies the complexity of finding values for these parameters such that the induced MDP satisfies some reachability constraints. We discuss different variants depending on the comparison operator in the constraints and the domain of the parameter values. We improve all known lower bounds for this problem, and notably provide ETR-completeness results for distinct variants of this problem. Furthermore, we provide insights in the functions describing the induced reachability probabilities, and how pMDPs generalise concurrent stochastic reachability games.
We show that there are $Sigma_3^0$-complete languages of infinite words accepted by non-deterministic Petri nets with Buchi acceptance condition, or equivalently by Buchi blind counter automata. This shows that omega-languages accepted by non-deterministic Petri nets are topologically more complex than those accepted by deterministic Petri nets.
447 - Anupam Das 2015
We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation
This paper concerns the question to what extent it can be efficiently determined whether an arbitrary program correctly solves a given problem. This question is investigated with programs of a very simple form, namely instruction sequences, and a very simple problem, namely the non-zeroness test on natural numbers. The instruction sequences concerned are of a kind by which, for each $n > 0$, each function from ${0,1}^n$ to ${0,1}$ can be computed. The established results include the time complexities of the problem of determining whether an arbitrary instruction sequence correctly implements the restriction to ${0,1}^n$ of the function from ${0,1}^*$ to ${0,1}$ that models the non-zeroness test function, for $n > 0$, under several restrictions on the arbitrary instruction sequence.
Constraint LTL, a generalisation of LTL over Presburger constraints, is often used as a formal language to specify the behavior of operational models with constraints. The freeze quantifier can be part of the language, as in some real-time logics, but this variable-binding mechanism is quite general and ubiquitous in many logical languages (first-order temporal logics, hybrid logics, logics for sequence diagrams, navigation logics, logics with lambda-abstraction etc.). We show that Constraint LTL over the simple domain (N,=) augmented with the freeze quantifier is undecidable which is a surprising result in view of the poor language for constraints (only equality tests). Man
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا