Do you want to publish a course? Click here

Learning from Multiple Noisy Augmented Data Sets for Better Cross-Lingual Spoken Language Understanding

190   0   0.0 ( 0 )
 Added by Ming Gong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languages, the augmented data sets are often noisy, and thus impede the performance of SLU models. In this paper we focus on mitigating noise in augmented data. We develop a denoising training approach. Multiple models are trained with data produced by various augmented methods. Those models provide supervision signals to each other. The experimental results show that our method outperforms the existing state of the art by 3.05 and 4.24 percentage points on two benchmark datasets, respectively. The code will be made open sourced on github.



rate research

Read More

Despite the promising results of current cross-lingual models for spoken language understanding systems, they still suffer from imperfect cross-lingual representation alignments between the source and target languages, which makes the performance sub-optimal. To cope with this issue, we propose a regularization approach to further align word-level and sentence-level representations across languages without any external resource. First, we regularize the representation of user utterances based on their corresponding labels. Second, we regularize the latent variable model (Liu et al., 2019) by leveraging adversarial training to disentangle the latent variables. Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios, and our model, trained on a few-shot setting with only 3% of the target language training data, achieves comparable performance to the supervised training with all the training data.
98 - Zijian Zhao , Su Zhu , Kai Yu 2019
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. In this work, we propose a data augmentation method with atomic templates for SLU, which involves minimum human efforts. The atomic templates produce exemplars for fine-grained constituents of semantic representations. We propose an encoder-decoder model to generate the whole utterance from atomic exemplars. Moreover, the generator could be transferred from source domains to help a new domain which has little data. Experimental results show that our method achieves significant improvements on DSTC 2&3 dataset which is a domain adaptation setting of SLU.
103 - Zijian Zhao , Su Zhu , Kai Yu 2019
Spoken language understanding (SLU) systems can be trained on two types of labelled data: aligned or unaligned. Unaligned data do not require word by word annotation and is easier to be obtained. In the paper, we focus on spoken language understanding from unaligned data whose annotation is a set of act-slot-value triples. Previous works usually focus on improve slot-value pair prediction and estimate dialogue act types separately, which ignores the hierarchical structure of the act-slot-value triples. Here, we propose a novel hierarchical decoding model which dynamically parses act, slot and value in a structured way and employs pointer network to handle out-of-vocabulary (OOV) values. Experiments on DSTC2 dataset, a benchmark unaligned dataset, show that the proposed model not only outperforms previous state-of-the-art model, but also can be generalized effectively and efficiently to unseen act-slot type pairs and OOV values.
Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinated-slot problems caused by the lack of sequential dependency information among each slot chunk. To gap this shortcoming, in this paper, we propose a novel non-autoregressive SLU model named Layered-Refine Transformer, which contains a Slot Label Generation (SLG) task and a Layered Refine Mechanism (LRM). SLG is defined as generating the next slot label with the token sequence and generated slot labels. With SLG, the non-autoregressive model can efficiently obtain dependency information during training and spend no extra time in inference. LRM predicts the preliminary SLU results from Transformers middle states and utilizes them to guide the final prediction. Experiments on two public datasets indicate that our model significantly improves SLU performance (1.5% on Overall accuracy) while substantially speed up (more than 10 times) the inference process over the state-of-the-art baseline.
While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method that replaces a segment of the input text with its translation in another language. XLDA enhances performance of all 14 tested languages of the cross-lingual natural language inference (XNLI) benchmark. With improvements of up to $4.8%$, training with XLDA achieves state-of-the-art performance for Greek, Turkish, and Urdu. XLDA is in contrast to, and performs markedly better than, a more naive approach that aggregates examples in various languages in a way that each example is solely in one language. On the SQuAD question answering task, we see that XLDA provides a $1.0%$ performance increase on the English evaluation set. Comprehensive experiments suggest that most languages are effective as cross-lingual augmentors, that XLDA is robust to a wide range of translation quality, and that XLDA is even more effective for randomly initialized models than for pretrained models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا