Do you want to publish a course? Click here

Towards high partial waves in lattice QCD with a dumbbell-like operator

103   0   0.0 ( 0 )
 Added by Jia-Jun Wu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

An extended two-hadron operator is developed to extract the spectra of irreducible representations (irreps) in the finite volume. The irreps of the group for the finite volume system are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra of the specific irrep. In particular, this new formulation only requires propagators to be computed from two distinct source locations, at fixed spatial separation. We perform a proof-of-principle study on a $24^3 times 48$ lattice volume with $m_piapprox 900$ MeV by isolating various spectra of the $pipi$ system with isospin-2 including a range of total momenta and irreps. By applying the Luscher formalism, the phase shifts of $S$-, $D$- and $G$-wave $pipi$ scattering with isospin-2 are extracted from the spectra.

rate research

Read More

Luschers method is routinely used to determine meson-meson, meson-baryon and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase-shifts describing meson-meson scattering in partial-waves with angular-momentum l<=6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase-shifts from Lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial-waves.
We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant $s$-wave interactions, but also those in $d$ waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle $d$ waves. We use three $N_f=2+1$ CLS ensembles with pion masses of $200$, $280$, and $340;$MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.
Our knowledge about the QCD phase diagram at finite baryon chemical potential $mu_{B}$ is limited by the well known sign problem. The path integral measure, in the standard determinantal approach, becomes complex at finite $mu_{B}$ so that standard Monte Carlo techniques cannot be directly applied. As the sign problem is representation dependent, by a suitable choice of the fundamental degrees of freedom that parameterize the partition function, it can get mild enough so that reweighting techniques can be used. A successful formulation, capable to tame the sign problem, is known since decades in the limiting case $betato 0$, where performing the gauge integration first, gives rise to a dual formulation in terms of color singlets (MDP formulation). Going beyond the strong coupling limit represents a serious challenge as the gauge integrals involved in the computation are only partially known analytically and become strongly coupled for $beta>0$. We will present explict formulae for all the integral relevant for ${rm SU}(N)$ gauge theories discretised `a la Wilson, and will discuss how they can be used to obtain a positive dual formulation, valid for all $beta$, for pure Yang Mills theory.
We apply the Distillation spatial smearing program to the extraction of the unpolarized isovector valence PDF of the nucleon. The improved volume sampling and control of excited-states afforded by distillation leads to a dramatically improved determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-twist effects is subsequently explored by extending the Wilson line length present in our non-local operators to one half the spatial extent of the lattice ensemble considered. The valence PDF is extracted by analyzing both the matched Ioffe-time Distribution (ITD), as well as a direct matching of the pITD to the PDF. Through development of a novel prescription to obtain the PDF from the pITD, we establish a concerning deviation of the pITD from the expected DGLAP evolution of the pseudo-PDF. The presence of DGLAP evolution is observed once more following introduction of a discretization term into the PDF extractions. Observance and correction of this discrepancy further highlights the utility of distillation in such structure studies.
This talk gives an overview, aimed at non-experts, of the recent progress on the studies of technicolor models on the lattice. Phenomenologically successful technicolor models require walking coupling; thus, an emphasis is put on the determination of the beta-function of various models. As a case study we consider SU(2) gauge field theory with two adjoint representation fermions, so-called minimal walking technicolor theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا