Do you want to publish a course? Click here

Quantifying Ultrafast Three-Dimensional Transport Using Interferometrically Enhanced Pump-Probe Microscopy

83   0   0.0 ( 0 )
 Added by Arjun Ashoka
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel microscopic technique to access local transient optical constants and carrier motion in thin-film materials in three dimensions, with sub-10 nm spatial precision and sub-15 fs temporal resolution. Our experimental scheme is based on imaging a traditionally defocussed plane in an interferometrically enhanced femtosecond pump-probe microscope, combining the amplitude and phase contrast between the perturbed and unperturbed probe due to the local photoinduced complex refractive index change. We find that our experimental approach is well described by a simple optical model based on a radially averaged Gaussian photoexcitation approximation, which we benchmark using finite-difference time-domain calculations. Measurements on the organic semiconductor pentacene reveal an unexpected sub-1 ps out-of-plane motion of the correlated triplet-triplet exciton. Our approach is applicable to thin film materials in any pump-probe experiment, and holds promise for quantitative studies of three-dimensional transport in semiconductors, especially relevant to next-generation functional materials.



rate research

Read More

We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650-900 nm) and mid-IR (5-20 $mu$m) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10$^{-4}$ over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on mid-IR pump, optical push and broadband probe in a single-crystal of Bi$_2$Sr$_2$Y$_{0.08}$Ca$_{0.92}$Cu$_2$O$_{8+delta}$ across the superconducting and pseudogap phases.
Scattering-type scanning near-field optical microscopy (s-SNOM) is instrumental in exploring polaritonic behaviors of two-dimensional (2D) materials at the nanoscale. A sharp s-SNOM tip couples momenta into 2D materials through phase matching to excite phonon polaritons, which manifest as nanoscale interference fringes in raster images. However, s-SNOM lacks the ability to detect the progression of near-field property along the perpendicular axis to the surface. Here, we perform near-field analysis of a micro-disk and a reflective edge made of isotopically pure hexagonal boron nitride (h-11BN), by using three-dimensional near-field response cubes obtained by peak force scattering-type near-field optical microscopy (PF-SNOM). Momentum quantization of polaritons from the confinement of the circular structure is revealed in situ. Moreover, tip-sample distance is found to be capable of fine-tuning the momentum of polaritons and modifying the superposition of quantized polaritonic modes. The PF-SNOM-based three-dimensional near-field analysis provides detailed characterization capability with a high spatial resolution to fully map three-dimensional near-fields of nano-photonics and polaritonic structures.
We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remarkable transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.
We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both fs pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21050 cm$^{-1}$. A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than $Delta$R= 0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a 3D Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.
Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivity of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا