Do you want to publish a course? Click here

Lee-Yang theory of criticality in interacting quantum many-body systems

84   0   0.0 ( 0 )
 Added by Christian Flindt
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum phase transitions are a ubiquitous many-body phenomenon that occurs in a wide range of physical systems, including superconductors, quantum spin liquids, and topological materials. However, investigations of quantum critical systems also represent one of the most challenging problems in physics, since highly correlated many-body systems rarely allow for an analytic and tractable description. Here we present a Lee-Yang theory of quantum phase transitions including a method to determine quantum critical points which readily can be implemented within the tensor network formalism and even in realistic experimental setups. We apply our method to a quantum Ising chain and the anisotropic quantum Heisenberg model and show how the critical behavior can be predicted by calculating or measuring the high cumulants of properly defined operators. Our approach provides a powerful formalism to analyze quantum phase transitions using tensor networks, and it paves the way for systematic investigations of quantum criticality in two-dimensional systems.



rate research

Read More

Collective states of interacting non-Abelian anyons have recently been studied mostly in the context of certain fractional quantum Hall states, such as the Moore-Read state proposed to describe the physics of the quantum Hall plateau at filling fraction v = 5/2. In this manuscript, we further expand this line of research and present non-unitary generalizations of interacting anyon models. In particular, we introduce the notion of Yang-Lee anyons, discuss their relation to the so-called `Gaffnian quantum Hall wave function, and describe an elementary model for their interactions. A one-dimensional version of this model -- a non-unitary generalization of the original golden chain model -- can be fully understood in terms of an exact algebraic solution and numerical diagonalization. We discuss the gapless theories of these chain models for general su(2)_k anyonic theories and their Galois conjugates. We further introduce and solve a one-dimensional version of the Levin-Wen model for non-unitary Yang-Lee anyons.
207 - Gaoyong Sun , Su-Peng Kou 2020
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
We develop a theory for light propagating in an atomic Bose-Einstein condensate in the presence of strong interactions. The resulting many-body correlations are shown to have profound effects on the optical properties of this interacting medium. For weak atom-light coupling, there is a well-defined quasiparticle, the polaron-polariton, supporting light propagation with spectral features differing significantly from the noninteracting case. The damping of the polaron-polariton depends nonmonotonically on the light-matter coupling strength, initially increasing and then decreasing. This gives rise to an interesting crossover between two quasiparticles: a bare polariton and a polaron-polariton, separated by a complex and lossy mixture of light and matter.
Non-Hermtian (NH) Hamiltonians effectively describing the physics of dissipative systems have become an important tool with applications ranging from classical meta-materials to quantum many-body systems. Exceptional points, the NH counterpart of spectral degeneracies, are among the paramount phenomena unique to the NH realm. While realizations of second-order exceptional points have been reported in a variety of microscopic models, higher-order ones have largely remained elusive in the many-body context, as they in general require fine tuning in high-dimensional parameter spaces. Here, we propose a microscopic model of correlated fermions in three spatial dimensions and demonstrate the occurrence of interaction-induced fourth-order exceptional points that are protected by chiral symmetry. We demonstrate their stability against symmetry breaking perturbations and investigate their characteristic analytical and topological properties.
363 - Thomas Vojta 2018
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا