Do you want to publish a course? Click here

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters

300   0   0.0 ( 0 )
 Added by Qinghao Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modern GPU datacenters are critical for delivering Deep Learning (DL) models and services in both the research community and industry. When operating a datacenter, optimization of resource scheduling and management can bring significant financial benefits. Achieving this goal requires a deep understanding of the job features and user behaviors. We present a comprehensive study about the characteristics of DL jobs and resource management. First, we perform a large-scale analysis of real-world job traces from SenseTime. We uncover some interesting conclusions from the perspectives of clusters, jobs and users, which can facilitate the cluster system designs. Second, we introduce a general-purpose framework, which manages resources based on historical data. As case studies, we design: a Quasi-Shortest-Service-First scheduling service, which can minimize the cluster-wide average job completion time by up to 6.5x; and a Cluster Energy Saving service, which improves overall cluster utilization by up to 13%.

rate research

Read More

With widespread advances in machine learning, a number of large enterprises are beginning to incorporate machine learning models across a number of products. These models are typically trained on shared, multi-tenant GPU clusters. Similar to existing cluster computing workloads, scheduling frameworks aim to provide features like high efficiency, resource isolation, fair sharing across users, etc. However Deep Neural Network (DNN) based workloads, predominantly trained on GPUs, differ in two significant ways from traditional big data analytics workloads. First, from a cluster utilization perspective, GPUs represent a monolithic resource that cannot be shared at a fine granularity across users. Second, from a workload perspective, deep learning frameworks require gang scheduling reducing the flexibility of scheduling and making the jobs themselves inelastic to failures at runtime. In this paper we present a detailed workload characterization of a two-month long trace from a multi-tenant GPU cluster in a large enterprise. By correlating scheduler logs with logs from individual jobs, we study three distinct issues that affect cluster utilization for DNN training workloads on multi-tenant clusters: (1) the effect of gang scheduling and locality constraints on queuing, (2) the effect of locality on GPU utilization, and (3) failures during training. Based on our experience running a large-scale operation, we provide design guidelines pertaining to next-generation cluster schedulers for DNN training workloads.
The increased use of deep learning (DL) in academia, government and industry has, in turn, led to the popularity of on-premise and cloud-hosted deep learning platforms, whose goals are to enable organizations utilize expensive resources effectively, and to share said resources among multiple teams in a fair and effective manner. In this paper, we examine the elastic scaling of Deep Learning (DL) jobs over large-scale training platforms and propose a novel resource allocation strategy for DL training jobs, resulting in improved job run time performance as well as increased cluster utilization. We begin by analyzing DL workloads and exploit the fact that DL jobs can be run with a range of batch sizes without affecting their final accuracy. We formulate an optimization problem that explores a dynamic batch size allocation to individual DL jobs based on their scaling efficiency, when running on multiple nodes. We design a fast dynamic programming based optimizer to solve this problem in real-time to determine jobs that can be scaled up/down, and use this optimizer in an autoscaler to dynamically change the allocated resources and batch sizes of individual DL jobs. We demonstrate empirically that our elastic scaling algorithm can complete up to $approx 2 times$ as many jobs as compared to a strong baseline algorithm that also scales the number of GPUs but does not change the batch size. We also demonstrate that the average completion time with our algorithm is up to $approx 10 times$ faster than that of the baseline.
Efficient GPU resource scheduling is essential to maximize resource utilization and save training costs for the increasing amount of deep learning workloads in shared GPU clusters. Existing GPU schedulers largely rely on static policies to leverage the performance characteristics of deep learning jobs. However, they can hardly reach optimal efficiency due to the lack of elasticity. To address the problem, we propose ONES, an ONline Evolutionary Scheduler for elastic batch size orchestration. ONES automatically manages the elasticity of each job based on the training batch size, so as to maximize GPU utilization and improve scheduling efficiency. It determines the batch size for each job through an online evolutionary search that can continuously optimize the scheduling decisions. We evaluate the effectiveness of ONES with 64 GPUs on TACCs Longhorn supercomputers. The results show that ONES can outperform the prior deep learning schedulers with a significantly shorter average job completion time.
321 - Kairan Sun , Xu Wei , Gengtao Jia 2015
Faced with continuously increasing scale of data, original back-propagation neural network based machine learning algorithm presents two non-trivial challenges: huge amount of data makes it difficult to maintain both efficiency and accuracy; redundant data aggravates the system workload. This project is mainly focused on the solution to the issues above, combining deep learning algorithm with cloud computing platform to deal with large-scale data. A MapReduce-based handwriting character recognizer will be designed in this project to verify the efficiency improvement this mechanism will achieve on training and practical large-scale data. Careful discussion and experiment will be developed to illustrate how deep learning algorithm works to train handwritten digits data, how MapReduce is implemented on deep learning neural network, and why this combination accelerates computation. Besides performance, the scalability and robustness will be mentioned in this report as well. Our system comes with two demonstration software that visually illustrates our handwritten digit recognition/encoding application.
GPU (graphics processing unit) has been used for many data-intensive applications. Among them, deep learning systems are one of the most important consumer systems for GPU nowadays. As deep learning applications impose deeper and larger models in order to achieve higher accuracy, memory management becomes an important research topic for deep learning systems, given that GPU has limited memory size. Many approaches have been proposed towards this issue, e.g., model compression and memory swapping. However, they either degrade the model accuracy or require a lot of manual intervention. In this paper, we propose two orthogonal approaches to reduce the memory cost from the system perspective. Our approaches are transparent to the models, and thus do not affect the model accuracy. They are achieved by exploiting the iterative nature of the training algorithm of deep learning to derive the lifetime and read/write order of all variables. With the lifetime semantics, we are able to implement a memory pool with minimal fragments. However, the optimization problem is NP-complete. We propose a heuristic algorithm that reduces up to 13.3% of memory compared with Nvidias default memory pool with equal time complexity. With the read/write semantics, the variables that are not in use can be swapped out from GPU to CPU to reduce the memory footprint. We propose multiple swapping strategies to automatically decide which variable to swap and when to swap out (in), which reduces the memory cost by up to 34.2% without communication overhead.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا