Various legacy and emerging industrial control applications create the requirement of periodic and time-sensitive communication (TSC) for 5G/6G networks. State-of-the-art semi-persistent scheduling (SPS) techniques fall short of meeting the requirements of this type of critical traffic due to periodicity misalignment between assignments and arriving packets that lead to significant waiting delays. To tackle this challenge, we develop a novel recursive periodicity shifting (RPS)-SPS scheme that provides an optimal scheduling policy by recursively aligning the period of assignments until the timing mismatch is minimized. RPS can be realized in 5G wireless networks with minimal modifications to the scheduling framework. Performance evaluation shows the effectiveness of the proposed scheme in terms of minimizing misalignment delay with arbitrary traffic periodicity.