SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators


Abstract in English

Ultra-fast & low-power superconductor single-flux-quantum (SFQ)-based CNN systolic accelerators are built to enhance the CNN inference throughput. However, shift-register (SHIFT)-based scratchpad memory (SPM) arrays prevent a SFQ CNN accelerator from exceeding 40% of its peak throughput, due to the lack of random access capability. This paper first documents our study of a variety of cryogenic memory technologies, including Vortex Transition Memory (VTM), Josephson-CMOS SRAM, MRAM, and Superconducting Nanowire Memory, during which we found that none of the aforementioned technologies made a SFQ CNN accelerator achieve high throughput, small area, and low power simultaneously. Second, we present a heterogeneous SPM architecture, SMART, composed of SHIFT arrays and a random access array to improve the inference throughput of a SFQ CNN systolic accelerator. Third, we propose a fast, low-power and dense pipelined random access CMOS-SFQ array by building SFQ passive-transmission-line-based H-Trees that connect CMOS sub-banks. Finally, we create an ILP-based compiler to deploy CNN models on SMART. Experimental results show that, with the same chip area overhead, compared to the latest SHIFT-based SFQ CNN accelerator, SMART improves the inference throughput by $3.9times$ ($2.2times$), and reduces the inference energy by $86%$ ($71%$) when inferring a single image (a batch of images).

Download