Do you want to publish a course? Click here

Searching for heavy leptoquarks at a muon collider

286   0   0.0 ( 0 )
 Added by Meng Lu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The LHCb Collaboration recently gave an update on testing lepton flavour universality with $B^+ rightarrow K^+ ell^+ ell^-$, in which a 3.1 standard deviations from the standard model prediction was observed. The g-2 experiment also reports a 3.3 standard deviations from the standard model on muon anomalous magnetic moment measurement. These deviations could be explained by introducing new particles including leptoquarks. In this paper, we show the possibility to search for heavy spin-1 leptoquarks at a future TeV scale muon collider by performing studies from three channels: 1) same flavour final states with either two bottom or two light quarks, 2) different flavour quark final states, and 3) a so-called VXS process representing the scattering between a vector boson and a leptoquark to probe the coupling between leptoquark and tau lepton. We conclude that a 3 TeV muon collider with $3~{ab^{-1}}$ of integrated luminosity is already sufficient to cover the leptoquark parameter space in order to explain the LHCb lepton flavour universality anomaly.



rate research

Read More

A high energy muon collider can provide new and complementary discovery potential to the LHC or future hadron colliders. Leptoquarks are a motivated class of exotic new physics models, with distinct production channels at hadron and lepton machines. We study a vector leptoquark model at a muon collider with $sqrt{s} = 3, 14$ TeV within a set of both UV and phenomenologically motivated flavor scenarios. We compute which production mechanism has the greatest reach for various values of the leptoquark mass and the coupling between leptoquark and Standard Model fermions. We find that we can probe leptoquark masses up to an order of magnitude beyond $sqrt{s}$ with perturbative couplings. Additionally, we can also probe regions of parameter space unavailable to flavor experiments. In particular, all of the parameter space of interest to explain recent low-energy anomalies in B meson decays would be covered even by a $sqrt{s} = 3$ TeV collider.
We study the discovery potential of the non-Standard Model (SM) heavy Higgs bosons in the Two-Higgs-Doublet Models (2HDMs) at a multi-TeV muon collider and explore the discrimination power among different types of 2HDMs. We find that the pair production of the non-SM Higgs bosons via the universal gauge interactions is the dominant mechanism once above the kinematic threshold. Single Higgs boson production associated with a pair of heavy fermions could be important in the parameter region with enhanced Yukawa couplings. For both signal final states, $mu^+ mu^-$ annihilation channels dominate over the vector boson fusion (VBF) processes, except at high center of mass energies where the VBF processes receive large logarithmic enhancement with the increase of energies. Single Higgs boson $s$-channel production in $mu^+ mu^-$-annihilation via the radiative return can also be important for the Type-L 2HDM in the very large $tanbeta$ region, extending the kinematic reach of the heavy Higgs boson mass to the collider energy. Considering both the production and decay of non-SM Higgs bosons, signals can be identified over the Standard Model backgrounds. Different types of 2HDMs can be distinguishable for moderate and large values of $tanbeta$.
The tau lepton plays important role in the correlation between the low-energy neutrino oscillation data and the lepton flavor structure in heavy neutrino decay. We investigate the lepton flavor signatures with tau lepton at hadron collider through lepton number violating (LNV) processes. In the Type I Seesaw with U$(1)_{rm B-L}$ extension, we study the pair production of heavy neutrinos via a $Z$ resonance. We present a detailed assessment of the search sensitivity to the channels with tau lepton in the subsequent decay of heavy neutrinos. For the benchmark model with $Z$ only coupled to the third generation fermions, we find that the future circular collider (FCC-hh) can discover the LNV signal with tau lepton for $M_{Z}$ up to 2.2 (3) TeV with the gauge coupling $g=0.6$ and the integrated luminosity of 3 (30) ab$^{-1}$. The test on the flavor combinations of SM charged leptons would reveal the specific nature of different heavy neutrinos.
310 - Joshua Sayre 2011
We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN Large Hadron Collider with $sqrt{s} = 14$ TeV. A phenomenological Lagrangian is adopted to evaluate the cross section of a pair of colored vector bosons (colorons, $tilde{rho}$) decaying into four colored scalar resonances (hyper-pions, $tilde{pi}$), which then decay into eight gluons. We include the dominant physics background from the production of $8g,7g1q, 6g2q$, and $5g3q$, and determine the masses of $tilde{pi}$ and $tilde{rho}$ where discovery is possible. For example, we find that a 5$sigma$ signal can be established for $M_{tilde{pi}} alt 495$ GeV ($M_{tilde{rho}} alt 1650$ GeV). More generally we give the reach of this process for a selection of possible cuts and integrated luminosities.
In light of the recent discovery of an approximately 126 GeV Higgs boson at the LHC, the particle physics community is beginning to explore the possibilities for a next-generation Higgs factory particle accelerator. In this report we study the s-channel resonant Higgs boson production and Standard Model backgrounds at a proposed mu+mu- collider Higgs factory operating at center-of-mass energy sqrt(s) = M_H with a beam width of 4.2 MeV. We study PYTHIA-generated Standard Model Higgs and background events at the generator level to identify and evaluate important channels for discovery and measurement of the Higgs mass, width, and branching ratios. We find that the H^0 -> bb and H^0 -> WW^* channels are the most useful for locating the Higgs peak. With an integrated luminosity of 1 fb^-1 we can measure a 126 GeV Standard Model Higgs mass accurately to within 0.25 MeV and its total width to within 0.45 MeV. Our results demonstrate the value of the high Higgs cross section and narrow beam resolution potentially achievable at a muon collider.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا