Chaotic waves serve as universal pattern generators


Abstract in English

Excitable media are prevalent models for describing physical, chemical, and biological systems which support wave propagation. In this letter, we show that the time evolution of the medium state at the wave fronts can be determined by complicated chaotic attractors. Wave front dynamics can be controlled by initial data choice. Building on this groundwork, we show that there is a mechano-chemical analog of the Universal Turing machine for morphogenesis problems. Namely, a fixed mechano-chemical system can produce any prescribed cell pattern depending on its input (initial data). This universal mechanism uses fundamental physical effects: spontaneous symmetry breaking with formation of many interfaces (kinks), which interact non-locally via a fast diffusing reagent. This interaction creates chaos. We present algorithms allowing us to obtain a prescribed target cell pattern.

Download