Do you want to publish a course? Click here

Can the Fe K-alpha Line Reliably Predict Supernova Remnant Progenitors?

84   0   0.0 ( 0 )
 Added by Vikram Dwarkadas
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The centroid energy of the Fe K$alpha$ line has been used to identify the progenitors of supernova remnants (SNRs). These investigations generally considered the energy of the centroid derived from the spectrum of the entire remnant. Here we use {it XMM-Newton} data to investigate the Fe K$alpha$ centroid in 6 SNRs: 3C~397, N132D, W49B, DEM L71, 1E 0102.2-7219, and Kes 73. In Kes 73 and 1E 0102.2-7219, we fail to detect any Fe K$alpha$ emission. We report a tentative first detection of Fe K$alpha$ emission in SNR DEM L71, with a centroid energy consistent with its Type Ia designation. In the remaining remnants, the spatial and spectral sensitivity is sufficient to investigate spatial variations of the Fe K$alpha$ centroid. We find in N132D and W49B that the centroids in different regions are consistent with that derived from the overall spectrum, although not necessarily with the remnant type identified via other means. However, in SNR 3C~397, we find statistically significant variation in the centroid of up to 100 eV, aligning with the variation in the density structure around the remnant. These variations span the intermediate space between centroid energies signifying core-collapse and Type Ia remnants. Shifting the dividing line downwards by 50 eV can place all the centroids in the CC region, but contradicts the remnant type obtained via other means. Our results show that caution must be used when employing the Fe K$alpha$ centroid of the entire remnant as the sole diagnostic for typing a remnant.

rate research

Read More

Overionized recombining plasmas (RPs) have been discovered from a dozen of mixed- morphology (MM) supernova remnants (SNRs). However their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understand the physical origin of RPs. We report on a spatially resolved X-ray spectroscopy of W28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are well reproduced by a combination of two-RP model with different temperatures and ionization states, whereas that in northeastern rim is explained with a single-RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the north- eastern rim also shows an excess emission of the Fe I K{alpha} line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic-ray particles accelerated in W28.
We constrained the progenitor masses for 169 supernova remnants, 8 historically observed supernovae, and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Additionally, there were 16 remnants that showed no sign of nearby star formation consistent with a core-collapse supernova, making them good Type Ia candidates. Using $Hubble$ $Space$ $Telescope$ broadband imaging, we measured stellar photometry of ACS/WFC fields in F435W, F555W, F606W, and F814W filters as well as WFC3/UVIS fields in F438W, F606W, and F814W. We then fitted this photometry with stellar evolutionary models to determine the ages of the young populations present at the positions of the SNRs and SNe. We then infer a progenitor mass probability distribution from the fitted age distribution. For 37 SNRs we tested how different filter combinations affected the inferred masses. We find that filters sensitive to H$alpha$, [N II], and [S II] gas emission can bias mass estimates for remnants that rely on our technique. Using a KS-test analysis on our most reliable measurements, we find the progenitor mass distribution is well-matched by a power-law index of $-2.6^{+0.5}_{-0.6}$, which is consistent with a standard initial mass function.
We determine the ages of the young, resolved stellar populations at the locations of 237 optically-identified supernova remnants in M83. These age distributions put constraints on the progenitor masses of the supernovae that produced 199 of the remnants. The other 38 show no evidence for having a young progenitor and are therefore good Type Ia SNR candidates. Starting from Hubble Space Telescope broadband imaging, we measured resolved stellar photometry of seven archival WFC3/UVIS fields in F336W, F438W, and F814W. We generate color-magnitude diagrams of the stars within 50 pc of each SNR and fit them with stellar evolution models to obtain the population ages. From these ages we infer the progenitor mass that corresponds to the lifetime of the most prominent age that is $<$50 Myr. In this sample, there are 47 SNRs with best-fit progenitor masses $>$15 M$_{odot}$, and 5 of these are $>$15 M$_{odot}$ at 84% confidence. This is the largest collection of high-mass progenitors to date, including our highest-mass progenitor inference found so far, with a constraint of $<$8 Myr. Overall, the distribution of progenitor masses has a power-law index of $-3.0^{+0.2}_{-0.7}$, steeper than Salpeter initial mass function ($-2.35$). It remains unclear whether the reason for the low number of high-mass progenitors is due to the difficulty of finding and measuring such objects or because only a fraction of very massive stars produce supernovae.
Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped in two classes, named Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X-1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources. We analysed the first NuSTAR observation of this source to study its spectral emission exploiting the high statistics data collected by this satellite. Examining the colour-colour diagram, the source was probably observed during the lower normal and flaring branches of its Z-track. We separated the data from the two branches in order to investigate the evolution of the source along the track. We fitted the 3-60 keV NuSTAR spectra using the same models for both the branches. We adopted two description for the continuum: in the first case we used a blackbody and a thermal Comptonisation with seed photons originating in the accretion disc; in the second one, we adopted a disc-blackbody and a Comptonisation with a blackbody-shaped spectrum of the incoming seed photons. A power-law fitting the high energy emission above 20 keV was also required in both cases. The two models provide the same physical scenario for the source in both the branches: a blackbody temperature between 0.8 and 1.5 keV, a disc-blackbody with temperature between 0.4 and 0.6 keV, and an optically thick Comptonising corona with optical depth between 6 and 10 and temperature about 3 keV. Furthermore, two lines related to the K$alpha$ and K$beta$ transitions of the He-like Fe XXV ions were detected at 6.6 keV and 7.8 keV, respectively. A hard tail modelled by a power law with a photon index between 2 and 3 was also required for both the models.
We searched for evidence of line emission around 4keV from the northwestern rim of the supernova remnant RX J0852.0-4622 using Suzaku XIS data. Several papers have reported the detection of an emission line around 4.1keV from this region of the sky. This line would arise from K-band fluorescence by Sc, the immediate decay product of 44Ti. We performed spectral analysis for the entire portion of the NW rim of the remnant within the XIS field of view, as well as various regions corresponding to regions of published claims of line emission. We found no line emission around 4.1keV anywhere, and are able to set a restrictive upper limit to the X-ray flux: 1.1x10^-6 s^-1 cm^-2 for the entire field. For every region, our flux upper limit falls below that of the previously claimed detection. Therefore, we conclude that, to date, no definite X-ray line feature from Sc-K emission has been detected in the NW rim of RX J0852.0-4622. Our negative-detection supports the recent claim that RX J0852-4622 is neither young (1700--4000 yr) nor nearby(~750 pc).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا