Do you want to publish a course? Click here

Efficient Absorption of Terahertz Radiation in Graphene Polymer Composites

79   0   0.0 ( 0 )
 Added by Alexander Balandin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that polymer composites with a low loading of graphene, below 1.2 wt. %, are efficient as electromagnetic absorbers in the THz frequency range. The epoxy-based graphene composites were tested at frequencies from 0.25 THz to 4 THz, revealing total shielding effectiveness of 85 dB (1 mm thickness) with graphene loading of 1.2 wt. % at the frequency f=1.6 THz. The THz radiation is mostly blocked by absorption rather than reflection. The efficiency of the THz radiation shielding by the lightweight, electrically insulating composites, increases with increasing frequency. Our results suggest that even the thin-film or spray coatings of graphene composites with thickness in the few-hundred-micrometer range can be sufficient for blocking THz radiation in many practical applications.



rate research

Read More

We present an electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth and we exploit it to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal-grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. We get 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9 _ 2.7 THz range. We then integrate our modulator with a multimode THz QCL. By adjusting the modulator operational bandwidth, we demonstrate that the graphene modulator can partially compensates the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the laser operational range, with 98 equidistant optical modes and with a spectral coverage of ~ 1.2 THz. This has significant potential for frontier applications in the terahertz, as tunable transformation-optics devices, active photonic components, adaptive and quantum optics, and as a metrological tool for spectroscopy at THz frequencies.
We report on experimental studies of terahertz (THz) radiation transmission through grating-gate graphene-channel transistor nanostructures and demonstrate room temperature THz radiation amplification stimulated by current-driven plasmon excitations. Specifically, with increase of the direct current (dc) under periodic charge density modulation, we observe a strong red shift of the resonant THz plasmon absorption, its complete bleaching, followed by the amplification and blue shift of the resonant plasmon frequency. Our results are, to the best of our knowledge, the first experimental observation of energy transfer from dc current to plasmons leading to THz amplification. We present a simple model allowing for the phenomenological description of the observed amplification phenomena. This model shows that in the presence of dc current the radiation-induced correction to dissipation is sensitive to the phase shift between THz oscillations of carrier density and drift velocity, and with increase of the current becomes negative, leading to amplification. The experimental results of this work as all obtained at room temperature, pave the way towards the new 2D plasmons based, voltage tuneable THz radiation amplifiers.
The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.
A set of uniform carbon microspheres (CS) whose diameters have the order of $ 0.125 mu m$ to $10 mu m $ was prepared from aqueous sucrose solution by means of hydrothermal carbonization of sugar molecules. A pressed pellet was composed by mixing CSs with polyethylene oxide (PEO). Electrical characterization of the pellet was carried out showing Ohmic current-voltage characteristics and temperature-dependent conductivity in the range $ 80K < T < 300K.$ The conductivity reached a maximum value of $ 0.245 S/cm $ at $ 258K. $ The dependence of conductivity on temperature was theoretically analyzed to determine predominating mechanisms of electron transport. It was shown that thermally-induced electron tunneling between adjacent spheres may take on an important part in the electron transport through the CS/PEO composites.
We report a THz reflectarray metasurface which uses graphene as active element to achieve beam steering, shaping and broadband phase modulation. This is based on the creation of a voltage controlled reconfigurable phase hologram, which can impart different reflection angles and phases to an incident beam, replacing bulky and fragile rotating mirrors used for terahertz imaging. This can also find applications in other regions of the electromagnetic spectrum, paving the way to versatile optical devices including light radars, adaptive optics, electro-optical modulators and screens.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا