Global Axisymmetric Euler Flows with Rotation


Abstract in English

Global regularity of axisymmetric incompressible Euler flows with non-trivial swirl in 3d is an outstanding open question. This work establishes that in the presence of uniform rotation, suitably small, localized and axisymmetric initial data lead to global strong solutions to the rotating 3d Euler equations. The solutions constructed are of Sobolev regularity, have non-vanishing swirl and scatter linearly, thanks to the dispersive effect induced by the rotation. To establish this, we introduce a framework that builds on the symmetries of the problem and precisely captures the anisotropic, dispersive mechanism due to rotation. This enables a fine analysis of the geometry of nonlinear interactions and allows us to propagate sharp decay bounds, which is crucial for the construction of global flows.

Download