No Arabic abstract
In this letter, we point to three widely accepted challenges that the quantum theory, quantum information, and quantum foundations communities are currently facing: indeterminism, the semantics of conditional probabilities, and the spooky action at a distance. We argue that these issues are fundamentally rooted in conflations commonly made between causal dependencies, counterfactual dependencies, and statistical dependencies. We argue that a simple, albeit somewhat uncomfortable shift of viewpoint leads to a way out of the impossibility to extend the theory beyond indeterminism, and towards the possibility that sound extensions of quantum theory, possibly even deterministic yet not super-deterministic, will emerge in the future. The paradigm shift, which we present here, involves a non-trivial relaxation of the commonly accepted mathematical definition of free choice, leading to non-Nashian free choice, more care with the choice of probabilistic notations, and more rigorous use of vocabulary related to causality, counterfactuals, and correlations, which are three concepts of a fundamentally different nature.
It is argued that the traditional realist methodology of physics, according to which human concepts, laws and theories can grasp the essence of reality, is incompatible with the most fruitful interpretation of quantum formalism. The proof rests on the violation by quantum mechanics of the foundational principles of that methodology. An alternative methodology, in which the construction of sciences finishes at the level of human experience, as standard quantum theory strongly suggests, is then conjectured.
In this comment we critically review an argument against the existence of objective physical outcomes, recently proposed by R. Healey [Foundations of Physics, 48(11), 1568-1589]. We show that his gedankenexperiment, based on a combination of Wigners friend scenarios and Bells inequalities, suffers from the main criticism, that the computed correlation functions entering the Bells inequality are in principle experimentally inaccessible, and hence the authors claim is not verifiable. We discuss perspectives for fixing that by adapting the proposed protocol and show that this, however, makes Healeys argument virtually equivalent to other previous, similar proposals that he explicitly criticises.
Why Im not happy with how Relational Quantum Mechanics has addressed the reconstruction of quantum theory, and why you shouldnt be either.
In a recent paper (arXiv:2107.04761), Sen critiques a superdeterministic model of quantum physics, Invariant Set Theory, proposed by one of the authors. He concludes that superdeterminism is `unlikely to solve the puzzle posed by the Bell correlations. He also claims that the model is neither local nor $psi$-epistemic. We here detail multiple problems with Sens argument.
The preparation procedure, an undefined notion in quantum theory, has not had the relevance that it deserves in the interpretation of quantum mechanical formalism. Here we utilize the concepts of identical and similar preparation procedures to show the conceptual differences and mutual interconnections between the statistical and the conventional interpretation of quantum formalism. Although the statistical understanding, and its final logical consequence, hidden variables theories (this connexion being explained in the text), have a great intuitive appeal due to its fewer ontological difficulties, both recent experimental results and some theoretical developments seem to support an epistemic alternative closer to the conventional one. Nevertheless, we must not rule out the possibility that new theorems or new explanatory principles may modify the reigning supremacy of this interpretation.