Generative Wind Power Curve Modeling Via Machine Vision: A Self-learning Deep Convolutional Network Based Method


Abstract in English

This paper develops a novel self-training U-net (STU-net) based method for the automated WPC model generation without requiring data pre-processing. The self-training (ST) process of STU-net has two steps. First, different from traditional studies regarding the WPC modeling as a curve fitting problem, in this paper, we renovate the WPC modeling formulation from a machine vision aspect. To develop sufficiently diversified training samples, we synthesize supervisory control and data acquisition (SCADA) data based on a set of S-shape functions depicting WPCs. These synthesized SCADA data and WPC functions are visualized as images and paired as training samples(I_x, I_wpc). A U-net is then developed to approximate the model recovering I_wpc from I_x. The developed U-net is applied into observed SCADA data and can successfully generate the I_wpc. Moreover, we develop a pixel mapping and correction process to derive a mathematical form f_wpc representing I_wpcgenerated previously. The proposed STU-net only needs to train once and does not require any data preprocessing in applications. Numerical experiments based on 76 WTs are conducted to validate the superiority of the proposed method by benchmarking against classical WPC modeling methods. To demonstrate the repeatability of the presented research, we release our code at https://github.com/IkeYang/STU-net.

Download