DVM-CAR: A large-scale automotive dataset for visual marketing research and applications


Abstract in English

The automotive industry is being transformed by technologies, applications and services ranging from sensors to big data analytics and to artificial intelligence. In this paper, we present our multidisciplinary initiative of creating a publicly available dataset to facilitate the visual-related marketing research and applications in automotive industry such as automotive exterior design, consumer analytics and sales modelling. We are motivated by the fact that there is growing interest in product aesthetics but there is no large-scale dataset available that covers a wide range of variables and information. We summarise the common issues faced by marketing researchers and computer scientists through a user survey study, and design our dataset to alleviate these issues. Our dataset contains 1.4 million images from 899 car models as well as their corresponding car model specification and sales information over more than ten years in the UK market. To the best of our knowledge, this is the very first large-scale automotive dataset which contains images, text and sales information from multiple sources over a long period of time. We describe the detailed data structure and the preparation steps, which we believe has the methodological contribution to the multi-source data fusion and sharing. In addition, we discuss three dataset application examples to illustrate the value of our dataset.

Download