Optimal entanglement swapping in quantum repeaters


Abstract in English

We formulate the problem of finding the optimal entanglement swapping scheme in a quantum repeater chain as a Markov decision process and present its solution for different repeaters sizes. Based on this, we are able to demonstrate that the commonly used doubling scheme for performing probabilistic entanglement swapping of probabilistically distributed entangled qubit pairs in quantum repeaters does not always produce the best possible raw rate. Focussing on this figure of merit, without considering additional probabilistic elements for error suppression such as entanglement distillation on higher nesting levels, our approach reveals that a power-of-two number of segments has no privileged position in quantum repeater theory; the best scheme can be constructed for any number of segments. Moreover, classical communication can be included into our scheme, and we show how this influences the raw waiting time for different number of segments, confirming again the optimality of non-doubling in some relevant parameter regimes. Thus, our approach provides the minimal possible waiting time of quantum repeaters in a fairly general physical setting.

Download