No Arabic abstract
Adversarial training (AT) has been demonstrated as one of the most promising defense methods against various adversarial attacks. To our knowledge, existing AT-based methods usually train with the locally most adversarial perturbed points and treat all the perturbed points equally, which may lead to considerably weaker adversarial robust generalization on test data. In this work, we introduce a new adversarial training framework that considers the diversity as well as characteristics of the perturbed points in the vicinity of benign samples. To realize the framework, we propose a Regional Adversarial Training (RAT) defense method that first utilizes the attack path generated by the typical iterative attack method of projected gradient descent (PGD), and constructs an adversarial region based on the attack path. Then, RAT samples diverse perturbed training points efficiently inside this region, and utilizes a distance-aware label smoothing mechanism to capture our intuition that perturbed points at different locations should have different impact on the model performance. Extensive experiments on several benchmark datasets show that RAT consistently makes significant improvement on standard adversarial training (SAT), and exhibits better robust generalization.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against these variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
Modern machine learning and deep learning models are shown to be vulnerable when testing data are slightly perturbed. Existing theoretical studies of adversarial training algorithms mostly focus on either adversarial training losses or local convergence properties. In contrast, this paper studies the generalization performance of a generic adversarial training algorithm. Specifically, we consider linear regression models and two-layer neural networks (with lazy training) using squared loss under low-dimensional and high-dimensional regimes. In the former regime, after overcoming the non-smoothness of adversarial training, the adversarial risk of the trained models can converge to the minimal adversarial risk. In the latter regime, we discover that data interpolation prevents the adversarially robust estimator from being consistent. Therefore, inspired by successes of the least absolute shrinkage and selection operator (LASSO), we incorporate the L1 penalty in the high dimensional adversarial learning and show that it leads to consistent adversarially robust estimation. A series of numerical studies are conducted to demonstrate how the smoothness and L1 penalization help improve the adversarial robustness of DNN models.
In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models. However, these models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise crafted to induce misclassification. This raises questions about the security but also the general trust in model predictions. We propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition (AMC) models. We show that current state-of-the-art models benefit from adversarial training, which mitigates the robustness issues for some families of modulations. We use adversarial perturbations to visualize the features learned, and we found that in robust models the signal symbols are shifted towards the nearest classes in constellation space, like maximum likelihood methods. This confirms that robust models not only are more secure, but also more interpretable, building their decisions on signal statistics that are relevant to modulation recognition.
In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training, we hypothesize that the gradient magnitude links to the model robustness. Motivated by this, we propose to perturb both the image and the label during training, which we call Bilateral Adversarial Training (BAT). To generate the adversarial label, we derive an closed-form heuristic solution. To generate the adversarial image, we use one-step targeted attack with the target label being the most confusing class. In the experiment, we first show that random start and the most confusing target attack effectively prevent the label leaking and gradient masking problem. Then coupled with the adversarial label part, our model significantly improves the state-of-the-art results. For example, against PGD100 white-box attack with cross-entropy loss, on CIFAR10, we achieve 63.7% versus 47.2%; on SVHN, we achieve 59.1% versus 42.1%. At last, the experiment on the very (computationally) challenging ImageNet dataset further demonstrates the effectiveness of our fast method.
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness In this work, we improve robustness-aware self-supervised pre-training by learning representations that are consistent under both data augmentations and adversarial perturbations. Our approach leverages a recent contrastive learning framework, which learns representations by maximizing feature consistency under differently augmented views. This fits particularly well with the goal of adversarial robustness, as one cause of adversarial fragility is the lack of feature invariance, i.e., small input perturbations can result in undesirable large changes in features or even predicted labels. We explore various options to formulate the contrastive task, and demonstrate that by injecting adversarial perturbations, contrastive pre-training can lead to models that are both label-efficient and robust. We empirically evaluate the proposed Adversarial Contrastive Learning (ACL) and show it can consistently outperform existing methods. For example on the CIFAR-10 dataset, ACL outperforms the previous state-of-the-art unsupervised robust pre-training approach by 2.99% on robust accuracy and 2.14% on standard accuracy. We further demonstrate that ACL pre-training can improve semi-supervised adversarial training, even when only a few labeled examples are available. Our codes and pre-trained models have been released at: https://github.com/VITA-Group/Adversarial-Contrastive-Learning.