Do you want to publish a course? Click here

WebQA: Multihop and Multimodal QA

99   0   0.0 ( 0 )
 Added by Yingshan Chang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Web search is fundamentally multimodal and multihop. Often, even before asking a question we choose to go directly to image search to find our answers. Further, rarely do we find an answer from a single source but aggregate information and reason through implications. Despite the frequency of this everyday occurrence, at present, there is no unified question answering benchmark that requires a single model to answer long-form natural language questions from text and open-ended visual sources -- akin to a humans experience. We propose to bridge this gap between the natural language and computer vision communities with WebQA. We show that A. our multihop text queries are difficult for a large-scale transformer model, and B. existing multi-modal transformers and visual representations do not perform well on open-domain visual queries. Our challenge for the community is to create a unified multimodal reasoning model that seamlessly transitions and reasons regardless of the source modality.



rate research

Read More

One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates a real-life urban environment. Due to the lack of human-annotated instructions that illustrate intricate urban scenes, outdoor VLN remains a challenging task to solve. This paper introduces a Multimodal Text Style Transfer (MTST) learning approach and leverages external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
Recently, a more challenging state tracking task, Audio-Video Scene-Aware Dialogue (AVSD), is catching an increasing amount of attention among researchers. Different from purely text-based dialogue state tracking, the dialogue in AVSD contains a sequence of question-answer pairs about a video and the final answer to the given question requires additional understanding of the video. This paper interprets the AVSD task from an open-domain Question Answering (QA) point of view and proposes a multimodal open-domain QA system to deal with the problem. The proposed QA system uses common encoder-decoder framework with multimodal fusion and attention. Teacher forcing is applied to train a natural language generator. We also propose a new data augmentation approach specifically under QA assumption. Our experiments show that our model and techniques bring significant improvements over the baseline model on the DSTC7-AVSD dataset and demonstrate the potentials of our data augmentation techniques.
We present a new large-scale corpus of Question-Answer driven Semantic Role Labeling (QA-SRL) annotations, and the first high-quality QA-SRL parser. Our corpus, QA-SRL Bank 2.0, consists of over 250,000 question-answer pairs for over 64,000 sentences across 3 domains and was gathered with a new crowd-sourcing scheme that we show has high precision and good recall at modest cost. We also present neural models for two QA-SRL subtasks: detecting argument spans for a predicate and generating questions to label the semantic relationship. The best models achieve question accuracy of 82.6% and span-level accuracy of 77.6% (under human evaluation) on the full pipelined QA-SRL prediction task. They can also, as we show, be used to gather additional annotations at low cost.
Multimodal neural machine translation (NMT) has become an increasingly important area of research over the years because additional modalities, such as image data, can provide more context to textual data. Furthermore, the viability of training multimodal NMT models without a large parallel corpus continues to be investigated due to low availability of parallel sentences with images, particularly for English-Japanese data. However, this void can be filled with comparable sentences that contain bilingual terms and parallel phrases, which are naturally created through media such as social network posts and e-commerce product descriptions. In this paper, we propose a new multimodal English-Japanese corpus with comparable sentences that are compiled from existing image captioning datasets. In addition, we supplement our comparable sentences with a smaller parallel corpus for validation and test purposes. To test the performance of this comparable sentence translation scenario, we train several baseline NMT models with our comparable corpus and evaluate their English-Japanese translation performance. Due to low translation scores in our baseline experiments, we believe that current multimodal NMT models are not designed to effectively utilize comparable sentence data. Despite this, we hope for our corpus to be used to further research into multimodal NMT with comparable sentences.
To build robust question answering systems, we need the ability to verify whether answers to questions are truly correct, not just good enough in the context of imperfect QA datasets. We explore the use of natural language inference (NLI) as a way to achieve this goal, as NLI inherently requires the premise (document context) to contain all necessary information to support the hypothesis (proposed answer to the question). We leverage large pre-trained models and recent prior datasets to construct powerful question converter and decontextualization modules, which can reformulate QA instances as premise-hypothesis pairs with very high reliability. Then, by combining standard NLI datasets with NLI examples automatically derived from QA training data, we can train NLI models to judge the correctness of QA models proposed answers. We show that our NLI approach can generally improve the confidence estimation of a QA model across different domains, evaluated in a selective QA setting. Careful manual analysis over the predictions of our NLI model shows that it can further identify cases where the QA model produces the right answer for the wrong reason, or where the answer cannot be verified as addressing all aspects of the question.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا