Do you want to publish a course? Click here

Synchronous Chip-to-Chip Communication with a Multi-Chip Resonator Clock Distribution Network

87   0   0.0 ( 0 )
 Added by Vladimir Talanov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconducting digital circuits are a promising approach to build packaged-level integrated systems with high energy-efficiency and computational density. In such systems, performance of the data link between chips mounted on a multi-chip module (MCM) is a critical driver of performance. In this work we report a synchronous data link using Reciprocal Quantum Logic (RQL) enabled by resonant clock distribution on the chip and on the MCM carrier. The simple physical link has only four Josephson junctions and 3 fJ/bit dissipation, including a 300 W/W cooling overhead. The driver produces a signal with 35 GHz analog bandwidth and connects to a single-ended receiver via 20 $Omega$ Nb Passive Transmission Line (PTL). To validate this link, we have designed, fabricated and tested two 32$times$32 mm$^2$ MCMs with eight 5$times$5 mm$^2$ chips connected serially and powered with a meander clock, and with four 10$times$10 mm$^2$ chips powered with a 2 GHz resonant clock. The meander clock MCM validates performance of the data link components, and achieved 5.4 dB AC bias margin with no degradation relative to individual chip test. The resonator MCM validates synchronization between chips, with a measured AC bias margin up to 4.8 dB between two chips. The resonator MCM is capable of powering circuits of 4 million Josephson junctions across the four chips with a projected 10 Gbps serial data rate.



rate research

Read More

The true-differential superconductor on-chip amplifier has complementary outputs that float with respect to chip ground. This improves signal integrity and compatibility with the receiving semiconductor stage. Both source-terminated and non-source-terminated designs producing 4mV demonstrated rejection of a large common mode interference in the package. Measured margins are $pm$8.5% on the output bias, and $pm$28% on AC clock amplitude. Waveforms and eye diagrams are taken at 2.9-10Gb/s. Direct measurement of bit-error rates are better than the resolution limit of 1e-12 at 2.9Gb/s, and better than 1e-9 at 10Gb/s.
Exploiting semiconductor fabrication techniques, natural carriers of quantum information such as atoms, electrons, and photons can be embedded in scalable integrated devices. Integrated optics provides a versatile platform for large-scale quantum information processing and transceiving with photons. Scaling up the integrated devices for quantum applications requires highperformance single-photon generation and photonic qubit-qubit entangling operations. However, previous demonstrations report major challenges in producing multiple bright, pure and identical single-photons, and entangling multiple photonic qubits with high fidelity. Another notable challenge is to noiselessly interface multiphoton sources and multiqubit operators in a single device. Here we demonstrate on-chip genuine multipartite entanglement and quantum teleportation in silicon, by coherently controlling an integrated network of microresonator nonlinear single-photon sources and linear-optic multiqubit entangling circuits. The microresonators are engineered to locally enhance the nonlinearity, producing multiple frequencyuncorrelated and indistinguishable single-photons, without requiring any spectral filtering. The multiqubit states are processed in a programmable linear circuit facilitating Bell-projection and fusion operation in a measurement-based manner. We benchmark key functionalities, such as intra-/inter-chip teleportation of quantum states, and generation of four-photon Greenberger-HorneZeilinger entangled states. The production, control, and transceiving of states are all achieved in micrometer-scale silicon chips, fabricated by complementary metal-oxide-semiconductor processes. Our work lays the groundwork for scalable on-chip multiphoton technologies for quantum computing and communication.
Quantum communication networks enable applications ranging from highly secure communication to clock synchronization and distributed quantum computing. Miniaturized, flexible, and cost-efficient resources will be key elements for ensuring the scalability of such networks as they progress towards large-scale deployed infrastructures. Here, we bring these elements together by combining an on-chip, telecom-wavelength, broadband entangled photon source with industry-grade flexible-grid wavelength division multiplexing techniques, to demonstrate reconfigurable entanglement distribution between up to 8 users in a resource-optimized quantum network topology. As a benchmark application we use quantum key distribution, and show low error and high secret key generation rates across several frequency channels, over both symmetric and asymmetric metropolitan-distance optical fibered links and including finite-size effects. By adapting the bandwidth allocation to specific network constraints, we also illustrate the flexible networking capability of our configuration. Together with the potential of our semiconductor source for distributing secret keys over a 60 nm bandwidth with commercial multiplexing technology, these results offer a promising route to the deployment of scalable quantum network architectures.
Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.
108 - K. Kakuyanagi , A. Kemp , T. Baba 2015
Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip to the outside of a dilution refrigerator. This can be done by using a selective qubit-energy shift induced by measurement apparatus. We demonstrate on-chip quantum feedback and succeed in the rapid initialization of a qubit by flipping the qubit state only when we detect the ground state of the qubit. The feedback loop of our quantum feedback method closed on a chip, and so the operating time needed to control a qubit is of the order of 10 ns. This operating time is shorter than with the convectional off-chip feedback method. Our on-chip quantum feedback technique opens many possibilities such as an application to quantum information processing and providing an understanding of the foundation of thermodynamics for quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا