No Arabic abstract
A triplon refers to a fictitious particle that carries angular momentum $S = 1$ corresponding to the elementary excitation in a broad class of quantum dimerized spin systems. Such systems without magnetic order have long been studied as a testing ground for quantum properties of spins. Although triplons have been found to play a central role in thermal and magnetic properties in dimerized magnets with singlet correlation, a spin angular momentum flow carried by triplons, a triplon current, has not been detected yet. Here we report spin Seebeck effects induced by a triplon current: triplon spin Seebeck effect, using a spin-Peierls system CuGeO$_3$. The result shows that the heating-driven triplon transport induces spin current whose sign is positive, opposite to the spin-wave cases in magnets. The triplon spin Seebeck effect persists far below the spin-Peierls transition temperature, being consistent with a theoretical calculation for triplon spin Seebeck effects.
We propose a novel picture of high-harmonic generation (HHG) in solids based on the concept of temporally changing band structures. To demonstrate the utility of this picture, we focus on the high-order sideband generation (HSG) caused by strong terahertz (THz) and weak near-infrared (NIR) light in the context of pump-probe spectroscopy. We find that the NIR frequency dependence of the HSG indicates the existence of new energy levels (sub-bands) around the band-gap energy, which have multiple frequencies of THz light. This sub-band picture explains why the HSG intensity becomes a non-monotonic function of the THz light amplitude. The present analysis not only reveals the origin of the plateau structure in HHG spectra, but also provides a connection to other high-field phenomena.
The interaction between spin and nanomechanical degrees of freedom attracts interest from the viewpoint of basic science and device applications. We study the magnon current induced by the torsional oscillation of ferromagnetic nanomechanical cantilever. We find that a finite Dzyaloshinskii-Moriya (DM) interaction emerges by the torsional oscillation, which is described by the spin gauge field, and the DM interaction leads to the detectably-large magnon current with frequency same as that of the torsional oscillation. Our theory paves the way for studying torsional spin-nanomechanical phenomena by using the spin gauge field.
Ab initio many-body perturbation theory within the $GW$ approximation is a Greens function formalism widely used in the calculation of quasiparticle excitation energies of solids. In what has become an increasingly standard approach, Kohn-Sham eigenenergies, generated from a DFT calculation with a strategically-chosen exchange correlation functional ``starting point, are used to construct $G$ and $W$, and then perturbatively corrected by the resultant $GW$ self-energy. In practice, there are several ways to construct the $GW$ self-energy, and these can lead to variations in predicted quasiparticle energies. For example, for ZnO and TiO$_2$, reported $GW$ fundamental gaps can vary by more than 1 eV. In this work, we address the convergence and key approximations in contemporary $G_0W_0$ calculations, including frequency-integration schemes and the treatment of the Coulomb divergence in the exact-exchange term. We study several systems,and compare three different $GW$ codes: BerkeleyGW, Abinit and Yambo. We demonstrate, for the first time, that the same quasiparticle energies for systems in the condensed phase can be obtained with different codes, and we provide a comprehensive assessment of implementations of the $GW$ approximation.
Solid-state materials have recently emerged as a new stage of strong-field physics and attosecond science. The mechanism of the electron dynamics driven by an ultrashort intense laser pulse is under intensive discussion. Here we theoretically discuss momentum-space strong-field electron dynamics in graphene and crystalline dielectrics and semiconductors. First, within massless Dirac fermion and tight-binding models for graphene, we rigorously derive intraband displacement and interband transition, which form the basis for understanding solid-state strong-field physics including high-harmonic generation (HHG). Then, based on the time-dependent Schrodinger equation for a one-dimensional model crystal, we introduce a simple, multiband, momentum-space three-step model that incorporates intraband displacement, interband tunneling, and recombination with a valence band hole. We also analyze how the model is modified by electron-hole interaction. Finally, actual three-dimensional materials are investigated. We present a time-dependent density-matrix method whose results for HHG are compared with experimental measurement results. Moreover, we describe the dynamical Franz-Keldysh effect in femtosecond time resolution, i.e., the time-dependent modulation of a dielectric function under an intense laser field, using a real-time time-dependent density functional theory.
Thermal expansion in materials can be accurately modeled with careful anharmonic phonon calculations within density functional theory. However, because of interest in controlling thermal expansion and the time consumed evaluating thermal expansion properties of candidate materials, either theoretically or experimentally, an approach to rapidly identifying materials with desirable thermal expansion properties would be of great utility. When the ionic bonding is important in a material, we show that the fraction of crystal volume occupied by ions, (based upon ionic radii), the mean bond coordination, and the deviation of bond coordination are descriptors that correlate with the room-temperature coefficient of thermal expansion for these materials found in widely accessible databases. Correlation is greatly improved by combining these descriptors in a multi-dimensional fit. This fit reinforces the physical interpretation that open space combined with low mean coordination and a variety of local bond coordinations leads to materials with lower coefficients of thermal expansion, materials with single-valued local coordination and less open space have the highest coefficients of thermal expansion.