Do you want to publish a course? Click here

Phases of the Bose-Einstein condensate dark matter model with both two- and three-particle interactions

58   0   0.0 ( 0 )
 Added by Alexandre Gavrilik
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we further elaborate on the Bose-Einstein condensate (BEC) dark matter model extended in our preceding work [Phys. Rev. D 102, 083510 (2020)] by the inclusion of 6th order (or three-particle) repulsive self-interaction term. Herein, our goal is to complete the picture through adding to the model the 4th order attractive self-interaction. The results of our analysis confirm the following: while in the preceding work the two-phase structure and the possibility of first-order phase transition was established, here we demonstrate that with the two competing self-interactions involved, the nontrivial phase structure of the enriched model remains intact. For this to hold, we study the conditions which the parameters of the model, including the interaction parameters, should satisfy. As a by-product and in order to provide some illustration, we obtain the rotation curves and the (bipartite) entanglement entropy for the case of particular dwarf galaxy.



rate research

Read More

Light scalars (as the axion) with mass m ~ 10^{-22} eV forming a Bose-Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in or out of equilibrium. Two observed quantities crucially constrain DM in an inescapable way: the average DM density rho_{DM} and the phase-space density Q. The observed values of rho_{DM} and Q in galaxies today constrain both the possibility to form a BEC and the DM mass m. These two constraints robustly exclude axion DM that decouples just after the QCD phase transition. Moreover, the value m ~ 10^{-22} eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BECs supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R ~ kpc and compact object masses M ~ 10^7 Msun they remarkably lead to the same particle mass m ~ 10^{-22} eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BECs turns to be more than sixty orders of magnitude smaller than the galaxy observed values. We conclude that the BECs and the axion cannot be the DM particle. However, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations.
We show that Dark Matter consisting of bosons of mass of about 1eV or less has critical temperature exceeding the temperature of the universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant which may account for the correct dark energy content of our universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our universe.
131 - A.V. Balatsky 2014
We introduce the concept of the {em odd-frequency} Bose Einstein Condensate (BEC), characterized by the odd frequency/time two-boson expectation value. To illustrate the concept of odd frequency BEC we present simple classification of pair boson condensates that explicitly permits this state. We point qualitative differences of odd-frequency BEC with conventional BEC and introduce the order parameter and wave function for the odd-frequency BEC.
189 - Ralf Schutzhold 2018
Partly motivated by recent proposals for the detection of gravitational waves, we study their interaction with Bose-Einstein condensates. For homogeneous condensates at rest, the gravitational wave does not directly create phonons (to lowest order), but merely affects existing phonons or indirectly creates phonon pairs via quantum squeezing -- an effect which has already been considered in the literature. For inhomogeneous condensate flows such as a vortex lattice, however, the impact of the gravitational wave can directly create phonons. This more direct interaction can be more efficient and could perhaps help bringing such a detection mechanism for gravitational waves a step closer towards experimental realizability -- even though it is still a long way to go. Finally, we argue that super-fluid Helium might offer some advantages in this respect.
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this species with naturally small and negative scattering length is achieved by a combination of sympathetic cooling with 87-Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intra-species interactions at Feshbach resonances. We explore tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a 39-K condensate is interesting for future experiments requiring a weakly interacting Bose gas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا