Do you want to publish a course? Click here

A real-time global re-localization framework for 3D LiDAR SLAM

75   0   0.0 ( 0 )
 Added by Ziqi Chai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Simultaneous localization and mapping (SLAM) has been a hot research field in the past years. Against the backdrop of more affordable 3D LiDAR sensors, research on 3D LiDAR SLAM is becoming increasingly popular. Furthermore, the re-localization problem with a point cloud map is the foundation for other SLAM applications. In this paper, a template matching framework is proposed to re-localize a robot globally in a 3D LiDAR map. This presents two main challenges. First, most global descriptors for point cloud can only be used for place detection under a small local area. Therefore, in order to re-localize globally in the map, point clouds and descriptors(templates) are densely collected using a reconstructed mesh model at an offline stage by a physical simulation engine to expand the functional distance of point cloud descriptors. Second, the increased number of collected templates makes the matching stage too slow to meet the real-time requirement, for which a cascade matching method is presented for better efficiency. In the experiments, the proposed framework achieves 0.2-meter accuracy at about 10Hz matching speed using pure python implementation with 100k templates, which is effective and efficient for SLAM applications.



rate research

Read More

Localization, or position fixing, is an important problem in robotics research. In this paper, we propose a novel approach for long-term localization in a changing environment using 3D LiDAR. We first create the map of a real environment using GPS and LiDAR. Then, we divide the map into several small parts as the targets for cloud registration, which can not only improve the robustness but also reduce the registration time. PointLocalization allows us to fuse different kinds of odometers, which can optimize the accuracy and frequency of localization results. We evaluate our algorithm on an unmanned ground vehicle (UGV) using LiDAR and a wheel encoder, and obtain the localization results at more than 20 Hz after fusion. The algorithm can also localize the UGV in a 180-degree field of view (FOV). Using an outdated map captured six months ago, this algorithm shows great robustness, and the test results show that it can achieve an accuracy of 10 cm. PointLocalization has been tested for a period of more than six months in a crowded factory and has operated successfully over a distance of more than 2000 km.
Map-centric SLAM utilizes elasticity as a means of loop closure. This approach reduces the cost of loop closure while still provides large-scale fusion-based dense maps, when compared to the trajectory-centric SLAM approaches. In this paper, we present a novel framework for 3D LiDAR-based map-centric SLAM. Having the advantages of a map-centric approach, our method exhibits new features to overcome the shortcomings of existing systems, associated with multi-modal sensor fusion and LiDAR motion distortion. This is accomplished through the use of a local Continuous-Time (CT) trajectory representation. Also, our surface resolution preservative matching algorithm and Wishart-based surfel fusion model enables non-redundant yet dense mapping. Furthermore, we present a robust metric loop closure model to make the approach stable regardless of where the loop closure occurs. Finally, we demonstrate our approach through both simulation and real data experiments using multiple sensor payload configurations and environments to illustrate its utility and robustness.
149 - Cyril Roussillon 2012
This article presents a new open-source C++ implementation to solve the SLAM problem, which is focused on genericity, versatility and high execution speed. It is based on an original object oriented architecture, that allows the combination of numerous sensors and landmark types, and the integration of various approaches proposed in the literature. The system capacities are illustrated by the presentation of an inertial/vision SLAM approach, for which several improvements over existing methods have been introduced, and that copes with very high dynamic motions. Results with a hand-held camera are presented.
Simultaneous Localization and Mapping (SLAM) has been considered as a solved problem thanks to the progress made in the past few years. However, the great majority of LiDAR-based SLAM algorithms are designed for a specific type of payload and therefore dont generalize across different platforms. In practice, this drawback causes the development, deployment and maintenance of an algorithm difficult. Consequently, our work focuses on improving the compatibility across different sensing payloads. Specifically, we extend the Cartographer SLAM library to handle different types of LiDAR including fixed or rotating, 2D or 3D LiDARs. By replacing the localization module of Cartographer and maintaining the sparse pose graph (SPG), the proposed framework can create high-quality 3D maps in real-time on different sensing payloads. Additionally, it brings the benefit of simplicity with only a few parameters need to be adjusted for each sensor type.
Globally localizing in a given map is a crucial ability for robots to perform a wide range of autonomous navigation tasks. This paper presents OneShot - a global localization algorithm that uses only a single 3D LiDAR scan at a time, while outperforming approaches based on integrating a sequence of point clouds. Our approach, which does not require the robot to move, relies on learning-based descriptors of point cloud segments and computes the full 6 degree-of-freedom pose in a map. The segments are extracted from the current LiDAR scan and are matched against a database using the computed descriptors. Candidate matches are then verified with a geometric consistency test. We additionally present a strategy to further improve the performance of the segment descriptors by augmenting them with visual information provided by a camera. For this purpose, a custom-tailored neural network architecture is proposed. We demonstrate that our LiDAR-only approach outperforms a state-of-the-art baseline on a sequence of the KITTI dataset and also evaluate its performance on the challenging NCLT dataset. Finally, we show that fusing in visual information boosts segment retrieval rates by up to 26% compared to LiDAR-only description.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا