No Arabic abstract
We compute correlation functions, specifically 1-point and 2-point functions, in holographic boundary conformal field theory (BCFT) using geodesic approximation. The holographic model consists of a massive scalar field coupled to a Karch-Randall brane -- a rigid boundary in the bulk AdS space. Geodesic approximation requires the inclusion of paths reflecting off of this brane, which we show in detail. For the 1-point function, we find agreement between geodesic approximation and the harder $Delta$-exact calculation, and we give a novel derivation of boundary entropy using the result. For the 2-point function, we find a factorization phase transition and a mysterious set of anomalous boundary-localized BCFT operators. We also discuss some puzzles concerning these operators.
We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator $O_k$ and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of $T^nO_k$ (being $T^n$ the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.
In this work, we study the $frac{1}{8}$-BPS heavy-heavy-light-light correlators in the D1D5 CFT and its holographic dual. On the field theory side, we compute the fermionic four-point correlators at the free orbifold point. On the dual gravity side, we compute the correlators of the scalar operators in the supergravity limit of the D1D5 CFT. Following the strategy of cite{Galliani:2017jlg}, the four-point function is converted into a two-point function in non-trivial geometries known as superstrata which are supergravity solutions preserving $1/8$ supersymmetries. We focus on a family of integrable superstrata, which allows us to compute the correlators perturbatively.
We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions in the bulk, with an arbitrary number of derivatives and for any number of spacetime dimensions. The solutions are fixed by judiciously picking an ansatz and imposing consistency conditions. The conditions include analyticity properties, consistency with the operator product expansion, and the Kubo-Martin-Schwinger condition. For the case without any derivatives we show agreement with an explicit diagrammatic computation. The structure of the answer is suggestive of a thermal Mellin amplitude. Additionally, we derive a simple dispersion relation for thermal two-point functions which reconstructs the function from its discontinuity.
We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These features are compared to similar ones observed in angle resolved photoemission experiments on high T_c superconductors. Along the way we elucidate some properties of p-wave superconductors in AdS_4 and discuss the construction of SO(4) superconductors.
We give a comment on the possible role of the sliver state in the generic boundary conformal field theory. We argue that for each Cardy state, there exists at least one projector in the string field theory.